000828465 001__ 828465
000828465 005__ 20220930130119.0
000828465 0247_ $$2doi$$a10.1002/pro.3064
000828465 0247_ $$2ISSN$$a0961-8368
000828465 0247_ $$2ISSN$$a1469-896X
000828465 0247_ $$2WOS$$aWOS:000393960300003
000828465 0247_ $$2altmetric$$aaltmetric:12623155
000828465 0247_ $$2pmid$$apmid:27727496
000828465 037__ $$aFZJ-2017-02424
000828465 041__ $$aEnglish
000828465 082__ $$a610
000828465 1001_ $$0P:(DE-HGF)0$$aCarballo-Pacheco, Martín$$b0
000828465 245__ $$aComparison of force fields for Alzheimer's A β42: A case study for intrinsically disordered proteins
000828465 260__ $$aHoboken, NJ$$bWiley$$c2017
000828465 3367_ $$2DRIVER$$aarticle
000828465 3367_ $$2DataCite$$aOutput Types/Journal article
000828465 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1497351317_20562
000828465 3367_ $$2BibTeX$$aARTICLE
000828465 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828465 3367_ $$00$$2EndNote$$aJournal Article
000828465 520__ $$aIntrinsically disordered proteins are essential for biological processes such as cell signalling, but are also associated to devastating diseases including Alzheimer's disease, Parkinson's disease or type II diabetes. Because of their lack of a stable three-dimensional structure, molecular dynamics simulations are often used to obtain atomistic details that cannot be observed experimentally. The applicability of molecular dynamics simulations depends on the accuracy of the force field chosen to represent the underlying free energy surface of the system. Here, we use replica exchange molecular dynamics simulations to test five modern force fields, OPLS, AMBER99SB, AMBER99SB*ILDN, AMBER99SBILDN-NMR and CHARMM22*, in their ability to model Aβ42, an intrinsically disordered peptide associated with Alzheimer's disease, and compare our results to nuclear magnetic resonance (NMR) experimental data. We observe that all force fields except AMBER99SBILDN-NMR successfully reproduce local NMR observables, with CHARMM22* being slightly better than the other force fields.
000828465 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000828465 588__ $$aDataset connected to CrossRef
000828465 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b1$$eCorresponding author$$ufzj
000828465 773__ $$0PERI:(DE-600)2000025-X$$a10.1002/pro.3064$$gVol. 26, no. 2, p. 174 - 185$$n2$$p174 - 185$$tProtein science$$v26$$x0961-8368$$y2017
000828465 8564_ $$uhttps://juser.fz-juelich.de/record/828465/files/Carballo-Pacheco_et_al-2017-Protein_Science.pdf$$yRestricted
000828465 8564_ $$uhttps://juser.fz-juelich.de/record/828465/files/Carballo-Pacheco_et_al-2017-Protein_Science.gif?subformat=icon$$xicon$$yRestricted
000828465 8564_ $$uhttps://juser.fz-juelich.de/record/828465/files/Carballo-Pacheco_et_al-2017-Protein_Science.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828465 8564_ $$uhttps://juser.fz-juelich.de/record/828465/files/Carballo-Pacheco_et_al-2017-Protein_Science.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828465 8564_ $$uhttps://juser.fz-juelich.de/record/828465/files/Carballo-Pacheco_et_al-2017-Protein_Science.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828465 8564_ $$uhttps://juser.fz-juelich.de/record/828465/files/Carballo-Pacheco_et_al-2017-Protein_Science.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828465 8767_ $$84765653$$92017-01-30$$d2017-03-27$$ePage charges$$jZahlung erfolgt$$zUSD 750,-
000828465 909CO $$ooai:juser.fz-juelich.de:828465$$pOpenAPC$$pVDB$$popenCost
000828465 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b1$$kFZJ
000828465 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000828465 9141_ $$y2017
000828465 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROTEIN SCI : 2015
000828465 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828465 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828465 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000828465 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828465 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828465 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828465 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828465 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000828465 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000828465 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828465 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000828465 9801_ $$aAPC
000828465 980__ $$ajournal
000828465 980__ $$aVDB
000828465 980__ $$aI:(DE-Juel1)ICS-6-20110106
000828465 980__ $$aAPC
000828465 980__ $$aUNRESTRICTED
000828465 981__ $$aI:(DE-Juel1)IBI-7-20200312