000828490 001__ 828490
000828490 005__ 20240711092250.0
000828490 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2017.02.038
000828490 0247_ $$2ISSN$$a0955-2219
000828490 0247_ $$2ISSN$$a1873-619X
000828490 0247_ $$2WOS$$aWOS:000398753400010
000828490 037__ $$aFZJ-2017-02448
000828490 041__ $$aEnglish
000828490 082__ $$a660
000828490 1001_ $$0P:(DE-HGF)0$$aOliveira Silva, R.$$b0$$eCorresponding author
000828490 245__ $$aMechanical properties and lifetime predictions of dense SrTi 1-x Fe x O 3-δ (x = 0.25, 0.35, 0.5)
000828490 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000828490 3367_ $$2DRIVER$$aarticle
000828490 3367_ $$2DataCite$$aOutput Types/Journal article
000828490 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1490772337_2442
000828490 3367_ $$2BibTeX$$aARTICLE
000828490 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828490 3367_ $$00$$2EndNote$$aJournal Article
000828490 520__ $$aNew oxygen transport membrane materials based on SrTi1-xFexO3-δ, synthesized through solid state reaction and processed via tape casting were characterized with respect to their mechanical behaviour via depth-sensitive indentation and ring-on-ring flexural testing. The elastic moduli obtained by indentation with 1 N load for SrTi1-xFexO3-δ (x = 0.25, 0.35, 0.5) specimens were 147 ± 10 GPa, 123 ± 6 GPa and 158 ± 10 GPa, respectively. Fracture stress was accessed by ring-on-ring testing performed at 100 N/min and the obtained results were 92 ± 9 MPa, 117 ± 15 MPa, and 100 ± 15 MPa for SrTi0.75Fe0.25O3, SrTi0.65Fe0.35O3, and SrTi0.5Fe0.5O3 respectively. Ring-on-ring tests conducted at different loading rates gave access to subcritical crack growth sensitivity and aided the prediction of the materials’ lifetime through stress-time-probability diagrams, where SrTi1-xFexO3-δ (x = 0.25, 0.35, 0.5) may resist for 1 year with a failure probability of 0.1% at least 15 MPa, 22 MPa, and 12 MPa respectively.
000828490 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000828490 536__ $$0G:(EU-Grant)608524$$aGREEN-CC - Graded Membranes for Energy Efficient New Generation Carbon Capture Process (608524)$$c608524$$fFP7-ENERGY-2013-1$$x1
000828490 588__ $$aDataset connected to CrossRef
000828490 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000828490 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
000828490 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, J.$$b1$$ufzj
000828490 7001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, F.$$b2$$ufzj
000828490 7001_ $$0P:(DE-Juel1)129587$$aBaumann, S.$$b3$$ufzj
000828490 7001_ $$0P:(DE-Juel1)161591$$aGuillon, O.$$b4$$ufzj
000828490 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2017.02.038$$gVol. 37, no. 7, p. 2629 - 2636$$n7$$p2629 - 2636$$tJournal of the European Ceramic Society$$v37$$x0955-2219$$y2017
000828490 8564_ $$uhttps://juser.fz-juelich.de/record/828490/files/%5BOLIVEIRA%20SILVA%5D_Mechanical_properties_STF.pdf$$yRestricted
000828490 8564_ $$uhttps://juser.fz-juelich.de/record/828490/files/%5BOLIVEIRA%20SILVA%5D_Mechanical_properties_STF.gif?subformat=icon$$xicon$$yRestricted
000828490 8564_ $$uhttps://juser.fz-juelich.de/record/828490/files/%5BOLIVEIRA%20SILVA%5D_Mechanical_properties_STF.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828490 8564_ $$uhttps://juser.fz-juelich.de/record/828490/files/%5BOLIVEIRA%20SILVA%5D_Mechanical_properties_STF.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828490 8564_ $$uhttps://juser.fz-juelich.de/record/828490/files/%5BOLIVEIRA%20SILVA%5D_Mechanical_properties_STF.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828490 909CO $$ooai:juser.fz-juelich.de:828490$$pec_fundedresources$$pVDB$$popenaire
000828490 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2015
000828490 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828490 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828490 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000828490 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000828490 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828490 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828490 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828490 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828490 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828490 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000828490 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000828490 9141_ $$y2017
000828490 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich$$b1$$kFZJ
000828490 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich$$b2$$kFZJ
000828490 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b3$$kFZJ
000828490 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162228$$aForschungszentrum Jülich$$b4$$kFZJ
000828490 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000828490 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000828490 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000828490 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x2
000828490 980__ $$ajournal
000828490 980__ $$aVDB
000828490 980__ $$aI:(DE-Juel1)IEK-2-20101013
000828490 980__ $$aI:(DE-Juel1)IEK-1-20101013
000828490 980__ $$aI:(DE-82)080011_20140620
000828490 980__ $$aUNRESTRICTED
000828490 981__ $$aI:(DE-Juel1)IMD-1-20101013
000828490 981__ $$aI:(DE-Juel1)IMD-2-20101013