| Home > Workflow collections > Publication Charges > Polynomial Chaos Expansion method as a tool to evaluate and quantify field homogeneities of a novel waveguide RF Wien Filter > print |
| 001 | 828641 | ||
| 005 | 20250701125907.0 | ||
| 024 | 7 | _ | |a 10.1016/j.nima.2017.03.040 |2 doi |
| 024 | 7 | _ | |a 0168-9002 |2 ISSN |
| 024 | 7 | _ | |a 1872-9576 |2 ISSN |
| 024 | 7 | _ | |a 2128/14170 |2 Handle |
| 024 | 7 | _ | |a WOS:000402464700009 |2 WOS |
| 024 | 7 | _ | |a altmetric:18568712 |2 altmetric |
| 037 | _ | _ | |a FZJ-2017-02539 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Slim, J. |0 P:(DE-Juel1)162454 |b 0 |
| 245 | _ | _ | |a Polynomial Chaos Expansion method as a tool to evaluate and quantify field homogeneities of a novel waveguide RF Wien Filter |
| 260 | _ | _ | |a Amsterdam |c 2017 |b North-Holland Publ. Co. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1499690716_7974 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a For the measurement of the electric dipole moment of protons and deuterons, a novel waveguide RF Wien filter has been designed and will soon be integrated at the COoler SYnchrotron at Jülich. The device operates at the harmonic frequencies of the spin motion. It is based on a waveguide structure that is capable of fulfilling the Wien filter condition View the MathML source(E→⊥B→)by design. The full-wave calculations demonstrated that the waveguide RF Wien filter is able to generate high-quality RF electric and magnetic fields. In reality, mechanical tolerances and misalignments decrease the simulated field quality, and it is therefore important to consider them in the simulations. In particular, for the electric dipole moment measurement, it is important to quantify the field errors systematically. Since Monte-Carlo simulations are computationally very expensive, we discuss here an efficient surrogate modeling scheme based on the Polynomial Chaos Expansion method to compute the field quality in the presence of tolerances and misalignments and subsequently to perform the sensitivity analysis at zero additional computational cost. |
| 536 | _ | _ | |a 612 - Cosmic Matter in the Laboratory (POF3-612) |0 G:(DE-HGF)POF3-612 |c POF3-612 |f POF III |x 0 |
| 536 | _ | _ | |a 631 - Accelerator R & D (POF3-631) |0 G:(DE-HGF)POF3-631 |c POF3-631 |f POF III |x 1 |
| 536 | _ | _ | |a srEDM - Search for electric dipole moments using storage rings (694340) |0 G:(EU-Grant)694340 |c 694340 |f ERC-2015-AdG |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 693 | _ | _ | |5 EXP:(DE-Juel1)JEDI-20170712 |e Jülich Electric Dipole moment Investigations |x 0 |0 EXP:(DE-Juel1)JEDI-20170712 |
| 700 | 1 | _ | |a Rathmann, F. |0 P:(DE-Juel1)131297 |b 1 |e Corresponding author |u fzj |
| 700 | 1 | _ | |a Nass, A. |0 P:(DE-Juel1)131267 |b 2 |u fzj |
| 700 | 1 | _ | |a Soltner, H. |0 P:(DE-Juel1)133754 |b 3 |u fzj |
| 700 | 1 | _ | |a Gebel, R. |0 P:(DE-Juel1)131164 |b 4 |u fzj |
| 700 | 1 | _ | |a Pretz, J. |0 P:(DE-Juel1)156288 |b 5 |u fzj |
| 700 | 1 | _ | |a Heberling, D. |0 P:(DE-HGF)0 |b 6 |
| 773 | _ | _ | |a 10.1016/j.nima.2017.03.040 |g p. S0168900217303807 |0 PERI:(DE-600)1466532-3 |p 52–62 |t Nuclear instruments & methods in physics research / A |v 859 |y 2017 |x 0168-9002 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/828641/files/1-s2.0-S0168900217303807-main.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/828641/files/1-s2.0-S0168900217303807-main.gif?subformat=icon |x icon |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/828641/files/1-s2.0-S0168900217303807-main.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/828641/files/1-s2.0-S0168900217303807-main.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/828641/files/1-s2.0-S0168900217303807-main.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/828641/files/1-s2.0-S0168900217303807-main.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:828641 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131297 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131267 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)133754 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131164 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)156288 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Universum |1 G:(DE-HGF)POF3-610 |0 G:(DE-HGF)POF3-612 |2 G:(DE-HGF)POF3-600 |v Cosmic Matter in the Laboratory |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF3-630 |0 G:(DE-HGF)POF3-631 |2 G:(DE-HGF)POF3-600 |v Accelerator R & D |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NUCL INSTRUM METH A : 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IKP-2-20111104 |k IKP-2 |l Experimentelle Hadrondynamik |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)ZEA-1-20090406 |k ZEA-1 |l Zentralinstitut für Technologie |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IKP-4-20111104 |k IKP-4 |l Kernphysikalische Großgeräte |x 2 |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IKP-2-20111104 |
| 980 | _ | _ | |a I:(DE-Juel1)ZEA-1-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)IKP-4-20111104 |
| 980 | _ | _ | |a APC |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)ITE-20250108 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|