001     828687
005     20210129230135.0
024 7 _ |a 10.1021/acsami.6b01727
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a WOS:000374274900062
|2 WOS
024 7 _ |a altmetric:4716260
|2 altmetric
024 7 _ |a pmid:26986938
|2 pmid
037 _ _ |a FZJ-2017-02579
082 _ _ |a 540
100 1 _ |0 P:(DE-HGF)0
|a Neumann, Christoph
|b 0
245 _ _ |a Spatial Control of Laser-Induced Doping Profiles in Graphene on Hexagonal Boron Nitride
260 _ _ |a Washington, DC
|b Soc.
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1491209348_25432
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a We present a method to create and erase spatially resolved doping profiles in graphene-hexagonal boron nitride heterostructures. The technique is based on photoinduced doping by a focused laser beam and does neither require masks nor photoresists. This makes our technique interesting for rapid prototyping of unconventional electronic device schemes, where the spatial resolution of the rewritable, long-term stable doping profiles is limited by only the laser spot size (≈600 nm) and the accuracy of sample positioning. Our optical doping method offers a way to implement and to test different, complex doping patterns in one and the very same graphene device, which is not achievable with conventional gating techniques.
536 _ _ |0 G:(DE-HGF)POF3-521
|a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Rizzi, Leo
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Reichardt, Sven
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Terrés, Bernat
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Khodkov, Timofiy
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Watanabe, Kenji
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Taniguchi, Takashi
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Beschoten, Bernd
|b 7
700 1 _ |0 P:(DE-Juel1)142024
|a Stampfer, Christoph
|b 8
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2467494-1
|a 10.1021/acsami.6b01727
|g Vol. 8, no. 14, p. 9377 - 9383
|n 14
|p 9377 - 9383
|t ACS applied materials & interfaces
|v 8
|x 1944-8252
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/828687/files/acsami.6b01727.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828687/files/acsami.6b01727.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828687/files/acsami.6b01727.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828687/files/acsami.6b01727.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828687/files/acsami.6b01727.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828687/files/acsami.6b01727.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828687
|p VDB
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)156572
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 1
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 2
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 3
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-HGF)0
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-HGF)0
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 4
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 7
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-HGF)0
|a Forschungszentrum Jülich
|b 8
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 8
|k RWTH
913 1 _ |0 G:(DE-HGF)POF3-521
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ACS APPL MATER INTER : 2015
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b ACS APPL MATER INTER : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21