000828939 001__ 828939
000828939 005__ 20210129230204.0
000828939 0247_ $$2doi$$a10.1021/acsami.7b00905
000828939 0247_ $$2ISSN$$a1944-8244
000828939 0247_ $$2ISSN$$a1944-8252
000828939 0247_ $$2WOS$$aWOS:000398246900065
000828939 037__ $$aFZJ-2017-02759
000828939 082__ $$a540
000828939 1001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b0$$eCorresponding author
000828939 245__ $$aMobility Modulation and Suppression of Defect Formation in Two-Dimensional Electron Systems by Charge-Transfer ManagementRC
000828939 260__ $$aWashington, DC$$bSoc.$$c2017
000828939 3367_ $$2DRIVER$$aarticle
000828939 3367_ $$2DataCite$$aOutput Types/Journal article
000828939 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491564427_659
000828939 3367_ $$2BibTeX$$aARTICLE
000828939 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000828939 3367_ $$00$$2EndNote$$aJournal Article
000828939 520__ $$aElectron mobility is one of the most-debated key attributes of low-dimensional electron systems emerging at complex oxide heterointerfaces. However, a common understanding of how electron mobility can be optimized in these systems has not been achieved so far. Here, we discuss a novel approach for achieving a systematic increase in electron mobility in polar/nonpolar perovskite interfaces by suppressing the thermodynamically required defect formation at the nanoscale. We discuss the transport properties of electron gases established at interfaces between SrTiO3 and various polar perovskites [LaAlO3, NdGaO3, and (La,Sr)(Al,Ta)O3], allowing for the individual variation of epitaxial strain and charge transfer among these epitaxial interfaces. As we show, the reduced charge transfer at (La,Sr)(Al,Ta)O3/SrTiO3 interfaces yields a systematic increase in electron mobility, while the reduced epitaxial strain has only minor impact. As thermodynamic continuum simulations suggest, the charge transfer across these interfaces affects both the spatial distribution of electrons and the background distribution of ionic defects, acting as major scatter centers within the potential well. Easing charge transfer in (La,Sr)(Al,Ta)O3/SrTiO3 yields an enlarged spatial separation of mobile charge carriers and scattering centers, as well as a reduced driving force for the formation of ionic defects at the nanoscale. Our results suggest a general recipe for achieving electron enhancements at oxide heterostructure interfaces and provide new perspectives for atomistic understanding of electron scattering in these systems.
000828939 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000828939 588__ $$aDataset connected to CrossRef
000828939 7001_ $$0P:(DE-Juel1)168457$$aHeinen, Ronja$$b1
000828939 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, Susanne$$b2
000828939 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b3
000828939 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b4
000828939 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b5
000828939 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.7b00905$$gVol. 9, no. 12, p. 10888 - 10896$$n12$$p10888 - 10896$$tACS applied materials & interfaces$$v9$$x1944-8252$$y2017
000828939 8564_ $$uhttps://juser.fz-juelich.de/record/828939/files/acsami.7b00905.pdf$$yRestricted
000828939 8564_ $$uhttps://juser.fz-juelich.de/record/828939/files/acsami.7b00905.gif?subformat=icon$$xicon$$yRestricted
000828939 8564_ $$uhttps://juser.fz-juelich.de/record/828939/files/acsami.7b00905.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000828939 8564_ $$uhttps://juser.fz-juelich.de/record/828939/files/acsami.7b00905.jpg?subformat=icon-180$$xicon-180$$yRestricted
000828939 8564_ $$uhttps://juser.fz-juelich.de/record/828939/files/acsami.7b00905.jpg?subformat=icon-640$$xicon-640$$yRestricted
000828939 8564_ $$uhttps://juser.fz-juelich.de/record/828939/files/acsami.7b00905.pdf?subformat=pdfa$$xpdfa$$yRestricted
000828939 909CO $$ooai:juser.fz-juelich.de:828939$$pVDB
000828939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b0$$kFZJ
000828939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168457$$aForschungszentrum Jülich$$b1$$kFZJ
000828939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b2$$kFZJ
000828939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b3$$kFZJ
000828939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b4$$kFZJ
000828939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b5$$kFZJ
000828939 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000828939 9141_ $$y2017
000828939 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000828939 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000828939 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000828939 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2015
000828939 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000828939 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000828939 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000828939 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000828939 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000828939 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000828939 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2015
000828939 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000828939 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1
000828939 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x2
000828939 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000828939 980__ $$ajournal
000828939 980__ $$aVDB
000828939 980__ $$aI:(DE-Juel1)PGI-7-20110106
000828939 980__ $$aI:(DE-Juel1)PGI-6-20110106
000828939 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000828939 980__ $$aI:(DE-82)080009_20140620
000828939 980__ $$aUNRESTRICTED