Journal Article FZJ-2017-02759

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Mobility Modulation and Suppression of Defect Formation in Two-Dimensional Electron Systems by Charge-Transfer ManagementRC

 ;  ;  ;  ;  ;

2017
Soc. Washington, DC

ACS applied materials & interfaces 9(12), 10888 - 10896 () [10.1021/acsami.7b00905]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Electron mobility is one of the most-debated key attributes of low-dimensional electron systems emerging at complex oxide heterointerfaces. However, a common understanding of how electron mobility can be optimized in these systems has not been achieved so far. Here, we discuss a novel approach for achieving a systematic increase in electron mobility in polar/nonpolar perovskite interfaces by suppressing the thermodynamically required defect formation at the nanoscale. We discuss the transport properties of electron gases established at interfaces between SrTiO3 and various polar perovskites [LaAlO3, NdGaO3, and (La,Sr)(Al,Ta)O3], allowing for the individual variation of epitaxial strain and charge transfer among these epitaxial interfaces. As we show, the reduced charge transfer at (La,Sr)(Al,Ta)O3/SrTiO3 interfaces yields a systematic increase in electron mobility, while the reduced epitaxial strain has only minor impact. As thermodynamic continuum simulations suggest, the charge transfer across these interfaces affects both the spatial distribution of electrons and the background distribution of ionic defects, acting as major scatter centers within the potential well. Easing charge transfer in (La,Sr)(Al,Ta)O3/SrTiO3 yields an enlarged spatial separation of mobile charge carriers and scattering centers, as well as a reduced driving force for the formation of ionic defects at the nanoscale. Our results suggest a general recipe for achieving electron enhancements at oxide heterostructure interfaces and provide new perspectives for atomistic understanding of electron scattering in these systems.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
  2. Elektronische Eigenschaften (PGI-6)
  3. Physik Nanoskaliger Systeme (ER-C-1)
  4. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 521 - Controlling Electron Charge-Based Phenomena (POF3-521) (POF3-521)

Appears in the scientific report 2017
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-6
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Publications database

 Record created 2017-04-06, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)