001     828939
005     20210129230204.0
024 7 _ |a 10.1021/acsami.7b00905
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a WOS:000398246900065
|2 WOS
037 _ _ |a FZJ-2017-02759
082 _ _ |a 540
100 1 _ |a Gunkel, Felix
|0 P:(DE-Juel1)130677
|b 0
|e Corresponding author
245 _ _ |a Mobility Modulation and Suppression of Defect Formation in Two-Dimensional Electron Systems by Charge-Transfer ManagementRC
260 _ _ |a Washington, DC
|c 2017
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491564427_659
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Electron mobility is one of the most-debated key attributes of low-dimensional electron systems emerging at complex oxide heterointerfaces. However, a common understanding of how electron mobility can be optimized in these systems has not been achieved so far. Here, we discuss a novel approach for achieving a systematic increase in electron mobility in polar/nonpolar perovskite interfaces by suppressing the thermodynamically required defect formation at the nanoscale. We discuss the transport properties of electron gases established at interfaces between SrTiO3 and various polar perovskites [LaAlO3, NdGaO3, and (La,Sr)(Al,Ta)O3], allowing for the individual variation of epitaxial strain and charge transfer among these epitaxial interfaces. As we show, the reduced charge transfer at (La,Sr)(Al,Ta)O3/SrTiO3 interfaces yields a systematic increase in electron mobility, while the reduced epitaxial strain has only minor impact. As thermodynamic continuum simulations suggest, the charge transfer across these interfaces affects both the spatial distribution of electrons and the background distribution of ionic defects, acting as major scatter centers within the potential well. Easing charge transfer in (La,Sr)(Al,Ta)O3/SrTiO3 yields an enlarged spatial separation of mobile charge carriers and scattering centers, as well as a reduced driving force for the formation of ionic defects at the nanoscale. Our results suggest a general recipe for achieving electron enhancements at oxide heterostructure interfaces and provide new perspectives for atomistic understanding of electron scattering in these systems.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Heinen, Ronja
|0 P:(DE-Juel1)168457
|b 1
700 1 _ |a Hoffmann-Eifert, Susanne
|0 P:(DE-Juel1)130717
|b 2
700 1 _ |a Jin, Lei
|0 P:(DE-Juel1)145711
|b 3
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 4
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 5
773 _ _ |a 10.1021/acsami.7b00905
|g Vol. 9, no. 12, p. 10888 - 10896
|0 PERI:(DE-600)2467494-1
|n 12
|p 10888 - 10896
|t ACS applied materials & interfaces
|v 9
|y 2017
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/828939/files/acsami.7b00905.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828939/files/acsami.7b00905.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828939/files/acsami.7b00905.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828939/files/acsami.7b00905.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828939/files/acsami.7b00905.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/828939/files/acsami.7b00905.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:828939
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130677
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130717
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130736
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2015
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 1
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21