| Home > Publications database > Impact of Selected LiPF $_{6}$ Hydrolysis Products on the High Voltage Stability of Lithium-Ion Battery Cells |
| Journal Article | FZJ-2017-02803 |
; ; ; ; ; ; ; ;
2016
Soc.
Washington, DC
This record in other databases:
Please use a persistent id in citations: doi:10.1021/acsami.6b09164
Abstract: Diverse LiPF6 hydrolysis products evolve during lithium-ion battery cell operation at elevated operation temperatures and high operation voltages. However, their impact on the formation and stability of the electrode/electrolyte interfaces is not yet investigated and understood. In this work, literature-known hydrolysis products of LiPF6 dimethyl fluorophosphate (DMFP) and diethyl fluorophosphate (DEFP) were synthesized and characterized. The use of DMFP and DEFP as electrolyte additive in 1 M LiPF6 in EC:EMC (1:1, by wt) was investigated in LiNi1/3Mn1/3Co1/3O2/Li half cells. When charged to a cutoff potential of 4.6 V vs Li/Li+, the additive containing cells showed improved cycling stability, increased Coulombic efficiencies, and prolonged shelf life. Furthermore, low amounts (1 wt % in this study) of the aforementioned additives did not show any negative effect on the cycling stability of graphite/Li half cells. DMFP and DEFP are susceptible to oxidation and contribute to the formation of an effective cathode/electrolyte interphase as confirmed by means of electrochemical stability window determination, and X-ray photoelectron spectroscopy characterization of pristine and cycled electrodes, and they are supported by computational calculations.
|
The record appears in these collections: |