Journal Article FZJ-2017-02803

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Impact of Selected LiPF $_{6}$ Hydrolysis Products on the High Voltage Stability of Lithium-Ion Battery Cells

 ;  ;  ;  ;  ;  ;  ;  ;

2016
Soc. Washington, DC

ACS applied materials & interfaces 8(45), 30871 - 30878 () [10.1021/acsami.6b09164]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Diverse LiPF6 hydrolysis products evolve during lithium-ion battery cell operation at elevated operation temperatures and high operation voltages. However, their impact on the formation and stability of the electrode/electrolyte interfaces is not yet investigated and understood. In this work, literature-known hydrolysis products of LiPF6 dimethyl fluorophosphate (DMFP) and diethyl fluorophosphate (DEFP) were synthesized and characterized. The use of DMFP and DEFP as electrolyte additive in 1 M LiPF6 in EC:EMC (1:1, by wt) was investigated in LiNi1/3Mn1/3Co1/3O2/Li half cells. When charged to a cutoff potential of 4.6 V vs Li/Li+, the additive containing cells showed improved cycling stability, increased Coulombic efficiencies, and prolonged shelf life. Furthermore, low amounts (1 wt % in this study) of the aforementioned additives did not show any negative effect on the cycling stability of graphite/Li half cells. DMFP and DEFP are susceptible to oxidation and contribute to the formation of an effective cathode/electrolyte interphase as confirmed by means of electrochemical stability window determination, and X-ray photoelectron spectroscopy characterization of pristine and cycled electrodes, and they are supported by computational calculations.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2017
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
IEK > IEK-12
Publications database

 Record created 2017-04-06, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)