000829294 001__ 829294
000829294 005__ 20240610120549.0
000829294 0247_ $$2doi$$a10.1088/1361-6668/aa5ab5
000829294 0247_ $$2ISSN$$a0953-2048
000829294 0247_ $$2ISSN$$a1361-6668
000829294 0247_ $$2WOS$$aWOS:000425701300001
000829294 0247_ $$2altmetric$$aaltmetric:21833519
000829294 037__ $$aFZJ-2017-03024
000829294 082__ $$a530
000829294 1001_ $$0P:(DE-HGF)0$$aSnezhko, A. V.$$b0
000829294 245__ $$aTerahertz Josephson spectral analysis and its applications
000829294 260__ $$aBristol$$bIOP Publ.$$c2017
000829294 3367_ $$2DRIVER$$aarticle
000829294 3367_ $$2DataCite$$aOutput Types/Journal article
000829294 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491919188_9484
000829294 3367_ $$2BibTeX$$aARTICLE
000829294 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829294 3367_ $$00$$2EndNote$$aJournal Article
000829294 520__ $$aPrinciples of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7−x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.
000829294 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000829294 588__ $$aDataset connected to CrossRef
000829294 7001_ $$0P:(DE-Juel1)144210$$aGundareva, Irina$$b1
000829294 7001_ $$0P:(DE-HGF)0$$aLyatti, M. V.$$b2
000829294 7001_ $$0P:(DE-HGF)0$$aVolkov, O. Y.$$b3
000829294 7001_ $$0P:(DE-HGF)0$$aPavlovskiy, V. V.$$b4
000829294 7001_ $$0P:(DE-Juel1)130898$$aPoppe, U.$$b5
000829294 7001_ $$0P:(DE-Juel1)130621$$aDivin, Yuri$$b6$$eCorresponding author
000829294 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/aa5ab5$$gVol. 30, no. 4, p. 044001 -$$n4$$p044001 -$$tSuperconductor science and technology$$v30$$x1361-6668$$y2017
000829294 8564_ $$uhttps://juser.fz-juelich.de/record/829294/files/Snezhko_2017_Supercond._Sci._Technol._30_044001.pdf$$yRestricted
000829294 8564_ $$uhttps://juser.fz-juelich.de/record/829294/files/Snezhko_2017_Supercond._Sci._Technol._30_044001.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829294 909CO $$ooai:juser.fz-juelich.de:829294$$pVDB
000829294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144210$$aForschungszentrum Jülich$$b1$$kFZJ
000829294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130898$$aForschungszentrum Jülich$$b5$$kFZJ
000829294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130621$$aForschungszentrum Jülich$$b6$$kFZJ
000829294 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000829294 9141_ $$y2017
000829294 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000829294 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000829294 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2015
000829294 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829294 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829294 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829294 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829294 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829294 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829294 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829294 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829294 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000829294 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000829294 920__ $$lyes
000829294 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000829294 980__ $$ajournal
000829294 980__ $$aVDB
000829294 980__ $$aI:(DE-Juel1)PGI-5-20110106
000829294 980__ $$aUNRESTRICTED
000829294 981__ $$aI:(DE-Juel1)ER-C-1-20170209