000829294 001__ 829294 000829294 005__ 20240610120549.0 000829294 0247_ $$2doi$$a10.1088/1361-6668/aa5ab5 000829294 0247_ $$2ISSN$$a0953-2048 000829294 0247_ $$2ISSN$$a1361-6668 000829294 0247_ $$2WOS$$aWOS:000425701300001 000829294 0247_ $$2altmetric$$aaltmetric:21833519 000829294 037__ $$aFZJ-2017-03024 000829294 082__ $$a530 000829294 1001_ $$0P:(DE-HGF)0$$aSnezhko, A. V.$$b0 000829294 245__ $$aTerahertz Josephson spectral analysis and its applications 000829294 260__ $$aBristol$$bIOP Publ.$$c2017 000829294 3367_ $$2DRIVER$$aarticle 000829294 3367_ $$2DataCite$$aOutput Types/Journal article 000829294 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491919188_9484 000829294 3367_ $$2BibTeX$$aARTICLE 000829294 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000829294 3367_ $$00$$2EndNote$$aJournal Article 000829294 520__ $$aPrinciples of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7−x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range. 000829294 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0 000829294 588__ $$aDataset connected to CrossRef 000829294 7001_ $$0P:(DE-Juel1)144210$$aGundareva, Irina$$b1 000829294 7001_ $$0P:(DE-HGF)0$$aLyatti, M. V.$$b2 000829294 7001_ $$0P:(DE-HGF)0$$aVolkov, O. Y.$$b3 000829294 7001_ $$0P:(DE-HGF)0$$aPavlovskiy, V. V.$$b4 000829294 7001_ $$0P:(DE-Juel1)130898$$aPoppe, U.$$b5 000829294 7001_ $$0P:(DE-Juel1)130621$$aDivin, Yuri$$b6$$eCorresponding author 000829294 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/aa5ab5$$gVol. 30, no. 4, p. 044001 -$$n4$$p044001 -$$tSuperconductor science and technology$$v30$$x1361-6668$$y2017 000829294 8564_ $$uhttps://juser.fz-juelich.de/record/829294/files/Snezhko_2017_Supercond._Sci._Technol._30_044001.pdf$$yRestricted 000829294 8564_ $$uhttps://juser.fz-juelich.de/record/829294/files/Snezhko_2017_Supercond._Sci._Technol._30_044001.pdf?subformat=pdfa$$xpdfa$$yRestricted 000829294 909CO $$ooai:juser.fz-juelich.de:829294$$pVDB 000829294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144210$$aForschungszentrum Jülich$$b1$$kFZJ 000829294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130898$$aForschungszentrum Jülich$$b5$$kFZJ 000829294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130621$$aForschungszentrum Jülich$$b6$$kFZJ 000829294 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000829294 9141_ $$y2017 000829294 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000829294 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000829294 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2015 000829294 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000829294 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000829294 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000829294 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000829294 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000829294 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000829294 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000829294 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000829294 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000829294 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000829294 920__ $$lyes 000829294 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0 000829294 980__ $$ajournal 000829294 980__ $$aVDB 000829294 980__ $$aI:(DE-Juel1)PGI-5-20110106 000829294 980__ $$aUNRESTRICTED 000829294 981__ $$aI:(DE-Juel1)ER-C-1-20170209