001     829347
005     20220930130120.0
024 7 _ |a 10.1016/j.bpj.2017.02.016
|2 doi
024 7 _ |a 0006-3495
|2 ISSN
024 7 _ |a 1542-0086
|2 ISSN
024 7 _ |a WOS:000398956000012
|2 WOS
024 7 _ |a altmetric:21833542
|2 altmetric
024 7 _ |a pmid:28402882
|2 pmid
037 _ _ |a FZJ-2017-03062
082 _ _ |a 570
100 1 _ |a Machtens, Jan-Philipp
|0 P:(DE-Juel1)156429
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Gating Charge Calculations by Computational Electrophysiology Simulations
260 _ _ |a Cambridge, Mass.
|c 2017
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522071208_17859
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Electrical cell signaling requires adjustment of ion channel, receptor, or transporter function in response to changes in membrane potential. For the majority of such membrane proteins, the molecular details of voltage sensing remain insufficiently understood. Here, we present a molecular dynamics simulation-based method to determine the underlying charge movement across the membrane—the gating charge—by measuring electrical capacitor properties of membrane-embedded proteins. We illustrate the approach by calculating the charge transfer upon membrane insertion of the HIV gp41 fusion peptide, and validate the method on two prototypical voltage-dependent proteins, the Kv1.2 K+ channel and the voltage sensor of the Ciona intestinalis voltage-sensitive phosphatase, against experimental data. We then use the gating charge analysis to study how the T1 domain modifies voltage sensing in Kv1.2 channels and to investigate the voltage dependence of the initial binding of two Na+ ions in Na+-coupled glutamate transporters. Our simulation approach quantifies various mechanisms of voltage sensing, enables direct comparison with experiments, and supports mechanistic interpretation of voltage sensitivity by fractional amino acid contributions
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
536 _ _ |a Mechanisms of Ca2+-activated Cl- channels and lipid scramblases of the TMEM16 family (jics41_20161101)
|0 G:(DE-Juel1)jics41_20161101
|c jics41_20161101
|f Mechanisms of Ca2+-activated Cl- channels and lipid scramblases of the TMEM16 family
|x 1
536 _ _ |a MOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS (jics40_20130501)
|0 G:(DE-Juel1)jics40_20130501
|c jics40_20130501
|f MOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Briones, Rodolfo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Alleva, Claudia
|0 P:(DE-Juel1)165847
|b 2
|u fzj
700 1 _ |a de Groot, Bert L.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fahlke, Christoph
|0 P:(DE-Juel1)136837
|b 4
|u fzj
773 _ _ |a 10.1016/j.bpj.2017.02.016
|g Vol. 112, no. 7, p. 1396 - 1405
|0 PERI:(DE-600)1477214-0
|n 7
|p 1396 - 1405
|t Biophysical journal
|v 112
|y 2017
|x 0006-3495
856 4 _ |u https://juser.fz-juelich.de/record/829347/files/1-s2.0-S0006349517302266-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829347/files/1-s2.0-S0006349517302266-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829347/files/1-s2.0-S0006349517302266-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829347/files/1-s2.0-S0006349517302266-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829347/files/1-s2.0-S0006349517302266-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/829347/files/1-s2.0-S0006349517302266-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:829347
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156429
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165847
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)136837
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOPHYS J : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-4-20110106
|k ICS-4
|l Zelluläre Biophysik
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 1 _ |a APC
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-1-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21