Journal Article FZJ-2017-03088

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
DNA like-charge attraction and overcharging by divalent counterions in the presence of divalent co-ions

 ;  ;

2017
Springer Science + Business Media B.V Dordrecht [u.a.]

Journal of biological physics 13(2), 185-195 () [10.1007/s10867-017-9443-x]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Strongly correlated electrostatics of DNA systems has drawn the interest of many groups, especially the condensation and overcharging of DNA by multivalent counterions. By adding counterions of different valencies and shapes, one can enhance or reduce DNA overcharging. In this paper, we focus on the effect of multivalent co-ions, specifically divalent co-ions such as SO2−4. A computational experiment of DNA condensation using Monte Carlo simulation in grand canonical ensemble is carried out where the DNA system is in equilibrium with a bulk solution containing a mixture of salt of different valency of co-ions. Compared to systems with purely monovalent co-ions, the influence of divalent co-ions shows up in multiple aspects. Divalent co-ions lead to an increase of monovalent salt in the DNA condensate. Because monovalent salts mostly participate in linear screening of electrostatic interactions in the system, more monovalent salt molecules enter the condensate leads to screening out of short-range DNA–DNA like charge attraction and weaker DNA condensation free energy. The overcharging of DNA by multivalent counterions is also reduced in the presence of divalent co-ions. Strong repulsions between DNA and divalent co-ions and among divalent co-ions themselves lead to a depletion of negative ions near the DNA surface as compared to the case without divalent co-ions. At large distances, the DNA–DNA repulsive interaction is stronger in the presence of divalent co-ions, suggesting that divalent co-ions’ role is not only that of simple stronger linear screening.

Classification:

Contributing Institute(s):
  1. Computational Biomedicine (IAS-5)
  2. Computational Biomedicine (INM-9)
Research Program(s):
  1. 899 - ohne Topic (POF3-899) (POF3-899)

Appears in the scientific report 2017
Database coverage:
Medline ; BIOSIS Previews ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IAS > IAS-5
Institute Collections > INM > INM-9
Workflow collections > Public records
Publications database

 Record created 2017-04-16, last modified 2024-06-25


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)