001     829732
005     20220930130122.0
024 7 _ |a 10.1371/journal.pone.0176192
|2 doi
024 7 _ |a 2128/14327
|2 Handle
024 7 _ |a WOS:000400647000043
|2 WOS
024 7 _ |a altmetric:19832274
|2 altmetric
024 7 _ |a pmid:28467458
|2 pmid
037 _ _ |a FZJ-2017-03370
082 _ _ |a 500
100 1 _ |0 P:(DE-Juel1)138244
|a Farrher, Ezequiel
|b 0
|e Corresponding author
245 _ _ |a Concerning the matching of magnetic susceptibility differences for the compensation of background gradients in anisotropic diffusion fibre phantoms
260 _ _ |a Lawrence, Kan.
|b PLoS
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1493899895_17279
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Artificial, anisotropic fibre phantoms are nowadays increasingly used in the field of diffusion-weighted MRI. Such phantoms represent useful tools for, among others, the calibration of pulse sequences and validation of diffusion models since they can mimic well-known structural features of brain tissue on the one hand, but exhibit a reduced complexity, on the other. Among all materials, polyethylene fibres have been widely used due to their excellent properties regarding the restriction of water diffusion and surface relaxation properties. Yet the magnetic susceptibility of polyethylene can be distinctly lower than that of distilled water. This difference produces strong microscopic, background field gradients in the vicinity of fibre bundles which are not parallel to the static magnetic field. This, in turn, modulates the MRI signal behaviour. In the present work we investigate an approach to reduce the susceptibility-induced background gradients via reducing the heterogeneity in the internal magnetic susceptibility. An aqueous solution of magnesium chloride hexahydrate (MgCl2·6H2O) is used for this purpose. Its performance is demonstrated in dedicated anisotropic fibre phantoms with different geometrical configurations.
536 _ _ |0 G:(DE-HGF)POF3-573
|a 573 - Neuroimaging (POF3-573)
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)131657
|a Lindemeyer, Johannes
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)131766
|a Grinberg, Farida
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)131782
|a Oros-Peusquens, Ana-Maria
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)131794
|a Shah, N. J.
|b 4
|u fzj
773 _ _ |0 PERI:(DE-600)2267670-3
|a 10.1371/journal.pone.0176192
|g Vol. 12, no. 5, p. e0176192 -
|n 5
|p e0176192 -
|t PLoS one
|v 12
|x 1932-6203
|y 2017
856 4 _ |u https://juser.fz-juelich.de/record/829732/files/journal.pone.0176192.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829732/files/journal.pone.0176192.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829732/files/journal.pone.0176192.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829732/files/journal.pone.0176192.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829732/files/journal.pone.0176192.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/829732/files/journal.pone.0176192.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:829732
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)138244
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131657
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131766
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131782
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131794
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-573
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b PLOS ONE : 2015
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21