Journal Article FZJ-2017-03370

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Concerning the matching of magnetic susceptibility differences for the compensation of background gradients in anisotropic diffusion fibre phantoms

 ;  ;  ;  ;

2017
PLoS Lawrence, Kan.

PLoS one 12(5), e0176192 - () [10.1371/journal.pone.0176192]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Artificial, anisotropic fibre phantoms are nowadays increasingly used in the field of diffusion-weighted MRI. Such phantoms represent useful tools for, among others, the calibration of pulse sequences and validation of diffusion models since they can mimic well-known structural features of brain tissue on the one hand, but exhibit a reduced complexity, on the other. Among all materials, polyethylene fibres have been widely used due to their excellent properties regarding the restriction of water diffusion and surface relaxation properties. Yet the magnetic susceptibility of polyethylene can be distinctly lower than that of distilled water. This difference produces strong microscopic, background field gradients in the vicinity of fibre bundles which are not parallel to the static magnetic field. This, in turn, modulates the MRI signal behaviour. In the present work we investigate an approach to reduce the susceptibility-induced background gradients via reducing the heterogeneity in the internal magnetic susceptibility. An aqueous solution of magnesium chloride hexahydrate (MgCl2·6H2O) is used for this purpose. Its performance is demonstrated in dedicated anisotropic fibre phantoms with different geometrical configurations.

Classification:

Contributing Institute(s):
  1. Physik der Medizinischen Bildgebung (INM-4)
  2. JARA-BRAIN (JARA-BRAIN)
Research Program(s):
  1. 573 - Neuroimaging (POF3-573) (POF3-573)

Appears in the scientific report 2017
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; BIOSIS Previews ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-BRAIN
Institute Collections > INM > INM-4
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2017-05-04, last modified 2022-09-30