000829878 001__ 829878
000829878 005__ 20240711085606.0
000829878 0247_ $$2doi$$a10.1016/j.apenergy.2017.04.086
000829878 0247_ $$2ISSN$$a0306-2619
000829878 0247_ $$2ISSN$$a1872-9118
000829878 0247_ $$2WOS$$aWOS:000403031800013
000829878 037__ $$aFZJ-2017-03494
000829878 082__ $$a620
000829878 1001_ $$0P:(DE-HGF)0$$aSteil, M. C.$$b0
000829878 245__ $$aDurable direct ethanol anode-supported solid oxide fuel cell
000829878 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000829878 3367_ $$2DRIVER$$aarticle
000829878 3367_ $$2DataCite$$aOutput Types/Journal article
000829878 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1494505189_10083
000829878 3367_ $$2BibTeX$$aARTICLE
000829878 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000829878 3367_ $$00$$2EndNote$$aJournal Article
000829878 520__ $$aAnode-supported solid oxide fuel cells accumulating more than 700 h of stable operation on dry ethanol with high current output are reported. A highly active ceria-based catalytic layer deposited onto the anode efficiently converts the primary fuel into hydrogen using the electrochemically generated steam. On the other hand, standard fuel cells without the catalytic layer collapse because of carbon deposit formation within the initial 5 h of operation with ethanol. The nanostructured ceria-based catalyst forms a continuous porous layer (∼25 µm thick) over the Ni-based anode support that has no apparent influence on the fuel cell operation and prevents carbon deposit formation. Moreover, the catalytic layer promotes overall steam reforming reactions of ethanol that result in similar current outputs in both hydrogen and ethanol fuels. The stability of single cells, with relatively large active area (8 cm2), confirms the feasibility of a catalytic layer for internal reforming of biofuels in solid oxide fuel cells. The experimental results provide a significant step towards the practical application of direct ethanol solid oxide fuel cells.
000829878 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000829878 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000829878 588__ $$aDataset connected to CrossRef
000829878 7001_ $$0P:(DE-HGF)0$$aNobrega, S. D.$$b1
000829878 7001_ $$0P:(DE-HGF)0$$aGeorges, S.$$b2
000829878 7001_ $$0P:(DE-HGF)0$$aGelin, P.$$b3
000829878 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, S.$$b4$$ufzj
000829878 7001_ $$0P:(DE-HGF)0$$aFonseca, F. C.$$b5$$eCorresponding author
000829878 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2017.04.086$$gVol. 199, p. 180 - 186$$p180 - 186$$tApplied energy$$v199$$x0306-2619$$y2017
000829878 8564_ $$uhttps://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.pdf$$yRestricted
000829878 8564_ $$uhttps://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.gif?subformat=icon$$xicon$$yRestricted
000829878 8564_ $$uhttps://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000829878 8564_ $$uhttps://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000829878 8564_ $$uhttps://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000829878 8564_ $$uhttps://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000829878 909CO $$ooai:juser.fz-juelich.de:829878$$pVDB
000829878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b4$$kFZJ
000829878 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000829878 9141_ $$y2017
000829878 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2015
000829878 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000829878 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000829878 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000829878 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000829878 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000829878 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000829878 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000829878 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000829878 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000829878 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000829878 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2015
000829878 920__ $$lyes
000829878 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000829878 980__ $$ajournal
000829878 980__ $$aVDB
000829878 980__ $$aI:(DE-Juel1)IEK-1-20101013
000829878 980__ $$aUNRESTRICTED
000829878 981__ $$aI:(DE-Juel1)IMD-2-20101013