000829878 001__ 829878 000829878 005__ 20240711085606.0 000829878 0247_ $$2doi$$a10.1016/j.apenergy.2017.04.086 000829878 0247_ $$2ISSN$$a0306-2619 000829878 0247_ $$2ISSN$$a1872-9118 000829878 0247_ $$2WOS$$aWOS:000403031800013 000829878 037__ $$aFZJ-2017-03494 000829878 082__ $$a620 000829878 1001_ $$0P:(DE-HGF)0$$aSteil, M. C.$$b0 000829878 245__ $$aDurable direct ethanol anode-supported solid oxide fuel cell 000829878 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017 000829878 3367_ $$2DRIVER$$aarticle 000829878 3367_ $$2DataCite$$aOutput Types/Journal article 000829878 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1494505189_10083 000829878 3367_ $$2BibTeX$$aARTICLE 000829878 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000829878 3367_ $$00$$2EndNote$$aJournal Article 000829878 520__ $$aAnode-supported solid oxide fuel cells accumulating more than 700 h of stable operation on dry ethanol with high current output are reported. A highly active ceria-based catalytic layer deposited onto the anode efficiently converts the primary fuel into hydrogen using the electrochemically generated steam. On the other hand, standard fuel cells without the catalytic layer collapse because of carbon deposit formation within the initial 5 h of operation with ethanol. The nanostructured ceria-based catalyst forms a continuous porous layer (∼25 µm thick) over the Ni-based anode support that has no apparent influence on the fuel cell operation and prevents carbon deposit formation. Moreover, the catalytic layer promotes overall steam reforming reactions of ethanol that result in similar current outputs in both hydrogen and ethanol fuels. The stability of single cells, with relatively large active area (8 cm2), confirms the feasibility of a catalytic layer for internal reforming of biofuels in solid oxide fuel cells. The experimental results provide a significant step towards the practical application of direct ethanol solid oxide fuel cells. 000829878 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0 000829878 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1 000829878 588__ $$aDataset connected to CrossRef 000829878 7001_ $$0P:(DE-HGF)0$$aNobrega, S. D.$$b1 000829878 7001_ $$0P:(DE-HGF)0$$aGeorges, S.$$b2 000829878 7001_ $$0P:(DE-HGF)0$$aGelin, P.$$b3 000829878 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, S.$$b4$$ufzj 000829878 7001_ $$0P:(DE-HGF)0$$aFonseca, F. C.$$b5$$eCorresponding author 000829878 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2017.04.086$$gVol. 199, p. 180 - 186$$p180 - 186$$tApplied energy$$v199$$x0306-2619$$y2017 000829878 8564_ $$uhttps://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.pdf$$yRestricted 000829878 8564_ $$uhttps://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.gif?subformat=icon$$xicon$$yRestricted 000829878 8564_ $$uhttps://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000829878 8564_ $$uhttps://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000829878 8564_ $$uhttps://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000829878 8564_ $$uhttps://juser.fz-juelich.de/record/829878/files/1-s2.0-S0306261917304919-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000829878 909CO $$ooai:juser.fz-juelich.de:829878$$pVDB 000829878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b4$$kFZJ 000829878 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0 000829878 9141_ $$y2017 000829878 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2015 000829878 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000829878 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000829878 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000829878 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000829878 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000829878 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000829878 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000829878 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000829878 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000829878 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000829878 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2015 000829878 920__ $$lyes 000829878 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000829878 980__ $$ajournal 000829878 980__ $$aVDB 000829878 980__ $$aI:(DE-Juel1)IEK-1-20101013 000829878 980__ $$aUNRESTRICTED 000829878 981__ $$aI:(DE-Juel1)IMD-2-20101013