000830218 001__ 830218
000830218 005__ 20240712113059.0
000830218 0247_ $$2doi$$a10.1149/2.0271711jes
000830218 0247_ $$2ISSN$$a0013-4651
000830218 0247_ $$2ISSN$$a0096-4743
000830218 0247_ $$2ISSN$$a0096-4786
000830218 0247_ $$2ISSN$$a1945-7111
000830218 0247_ $$2Handle$$a2128/14551
000830218 0247_ $$2WOS$$aWOS:000413263000010
000830218 037__ $$aFZJ-2017-03792
000830218 041__ $$aEnglish
000830218 082__ $$a540
000830218 1001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b0$$eCorresponding author$$ufzj
000830218 245__ $$aImproving the Lithium Ion Transport in Polymer Electrolytes by Functionalized Ionic-Liquid Additives: Simulations and Modeling
000830218 260__ $$aPennington, NJ$$bElectrochemical Soc.$$c2017
000830218 3367_ $$2DRIVER$$aarticle
000830218 3367_ $$2DataCite$$aOutput Types/Journal article
000830218 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1496056660_26299
000830218 3367_ $$2BibTeX$$aARTICLE
000830218 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000830218 3367_ $$00$$2EndNote$$aJournal Article
000830218 520__ $$aWe present a theoretical study combining molecular dynamics (MD) simulations with an analytical lithium ion transport model [Maitra and Heuer, Phys. Rev. Lett. 2007, 98, 227802] to highlight a novel strategy to increase the lithium mobility in polymer electrolytes based on poly(ethylene oxide) (PEO). This is achieved by using a pyrrolidinium-based ionic liquid (IL) where the cation has been chemically functionalized by a short oligoether side chain [von Zamory et al., Phys. Chem. Chem. Phys. 2016, 18(31), 21539] as an additive. Since the oligoether moieties at the pyrrolidinium cations form pronounced coordinations to the lithium ions for sufficiently long side chains, the ions can be detached from the PEO backbone. In this way, a fundamentally new lithium ion transport mechanism is established (shuttling mechanism), in which the lithium dynamics is decoupled from the polymer dynamics, the latter typically being slow under experimental conditions. Based on our simulations, we incorporate this novel mechanism into our existing model, which accurately reproduces the observed lithium dynamics. We demonstrate that the use of oligoether-functionalized IL additives significantly increases the lithium diffusivity. Finally, we show that for experimentally relevant electrolytes containing long polymer chains, an even stronger increase of the lithium mobility can be expected.
000830218 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000830218 588__ $$aDataset connected to CrossRef
000830218 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie-Elisée$$b1$$ufzj
000830218 7001_ $$0P:(DE-HGF)0$$aHeuer, Andreas$$b2
000830218 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/2.0271711jes$$gVol. 164, no. 11, p. E3225 - E3231$$n11$$pE3225 - E3231$$tJournal of the Electrochemical Society$$v164$$x0013-4651$$y2017
000830218 8564_ $$uhttps://juser.fz-juelich.de/record/830218/files/J.%20Electrochem.%20Soc.-2017-Diddens-E3225-31.pdf$$yOpenAccess
000830218 8564_ $$uhttps://juser.fz-juelich.de/record/830218/files/J.%20Electrochem.%20Soc.-2017-Diddens-E3225-31.gif?subformat=icon$$xicon$$yOpenAccess
000830218 8564_ $$uhttps://juser.fz-juelich.de/record/830218/files/J.%20Electrochem.%20Soc.-2017-Diddens-E3225-31.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000830218 8564_ $$uhttps://juser.fz-juelich.de/record/830218/files/J.%20Electrochem.%20Soc.-2017-Diddens-E3225-31.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000830218 8564_ $$uhttps://juser.fz-juelich.de/record/830218/files/J.%20Electrochem.%20Soc.-2017-Diddens-E3225-31.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000830218 8564_ $$uhttps://juser.fz-juelich.de/record/830218/files/J.%20Electrochem.%20Soc.-2017-Diddens-E3225-31.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000830218 8767_ $$84115290032644$$92017-05-24$$d2017-05-24$$eHybrid-OA$$jOffsetting$$pJESP-17-1306R
000830218 8767_ $$84115290032644$$92017-05-24$$d2017-05-24$$eOther$$jZahlung erfolgt$$lKK: Barbers$$pJESP-17-1306R$$zSuppl. Material USD 100,-
000830218 909CO $$ooai:juser.fz-juelich.de:830218$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000830218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b0$$kFZJ
000830218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166311$$aForschungszentrum Jülich$$b1$$kFZJ
000830218 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000830218 9141_ $$y2017
000830218 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000830218 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000830218 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000830218 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2015
000830218 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000830218 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000830218 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000830218 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000830218 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000830218 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000830218 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000830218 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000830218 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000830218 9801_ $$aAPC
000830218 9801_ $$aFullTexts
000830218 980__ $$ajournal
000830218 980__ $$aVDB
000830218 980__ $$aUNRESTRICTED
000830218 980__ $$aI:(DE-Juel1)IEK-12-20141217
000830218 980__ $$aAPC
000830218 981__ $$aI:(DE-Juel1)IMD-4-20141217