001     830218
005     20240712113059.0
024 7 _ |a 10.1149/2.0271711jes
|2 doi
024 7 _ |a 0013-4651
|2 ISSN
024 7 _ |a 0096-4743
|2 ISSN
024 7 _ |a 0096-4786
|2 ISSN
024 7 _ |a 1945-7111
|2 ISSN
024 7 _ |a 2128/14551
|2 Handle
024 7 _ |a WOS:000413263000010
|2 WOS
037 _ _ |a FZJ-2017-03792
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Diddens, Diddo
|0 P:(DE-Juel1)169877
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Improving the Lithium Ion Transport in Polymer Electrolytes by Functionalized Ionic-Liquid Additives: Simulations and Modeling
260 _ _ |a Pennington, NJ
|c 2017
|b Electrochemical Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1496056660_26299
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present a theoretical study combining molecular dynamics (MD) simulations with an analytical lithium ion transport model [Maitra and Heuer, Phys. Rev. Lett. 2007, 98, 227802] to highlight a novel strategy to increase the lithium mobility in polymer electrolytes based on poly(ethylene oxide) (PEO). This is achieved by using a pyrrolidinium-based ionic liquid (IL) where the cation has been chemically functionalized by a short oligoether side chain [von Zamory et al., Phys. Chem. Chem. Phys. 2016, 18(31), 21539] as an additive. Since the oligoether moieties at the pyrrolidinium cations form pronounced coordinations to the lithium ions for sufficiently long side chains, the ions can be detached from the PEO backbone. In this way, a fundamentally new lithium ion transport mechanism is established (shuttling mechanism), in which the lithium dynamics is decoupled from the polymer dynamics, the latter typically being slow under experimental conditions. Based on our simulations, we incorporate this novel mechanism into our existing model, which accurately reproduces the observed lithium dynamics. We demonstrate that the use of oligoether-functionalized IL additives significantly increases the lithium diffusivity. Finally, we show that for experimentally relevant electrolytes containing long polymer chains, an even stronger increase of the lithium mobility can be expected.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Paillard, Elie-Elisée
|0 P:(DE-Juel1)166311
|b 1
|u fzj
700 1 _ |a Heuer, Andreas
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1149/2.0271711jes
|g Vol. 164, no. 11, p. E3225 - E3231
|0 PERI:(DE-600)2002179-3
|n 11
|p E3225 - E3231
|t Journal of the Electrochemical Society
|v 164
|y 2017
|x 0013-4651
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/830218/files/J.%20Electrochem.%20Soc.-2017-Diddens-E3225-31.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/830218/files/J.%20Electrochem.%20Soc.-2017-Diddens-E3225-31.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/830218/files/J.%20Electrochem.%20Soc.-2017-Diddens-E3225-31.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/830218/files/J.%20Electrochem.%20Soc.-2017-Diddens-E3225-31.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/830218/files/J.%20Electrochem.%20Soc.-2017-Diddens-E3225-31.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/830218/files/J.%20Electrochem.%20Soc.-2017-Diddens-E3225-31.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:830218
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166311
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21