000830262 001__ 830262
000830262 005__ 20240712084510.0
000830262 0247_ $$2Handle$$a2128/14557
000830262 0247_ $$2ISSN$$a1866-1793
000830262 020__ $$a978-3-95806-209-2
000830262 037__ $$aFZJ-2017-03835
000830262 041__ $$aEnglish
000830262 1001_ $$0P:(DE-Juel1)136680$$aZhang, Chao$$b0$$eCorresponding author$$ufzj
000830262 245__ $$aInterface and Topography Optimizationfor Thin-Film Silicon Solar Cells with DopedMicrocrystalline Silicon Oxide Layers$$f- 2016-11-24
000830262 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2017
000830262 300__ $$aVII, 156 S.
000830262 3367_ $$2DataCite$$aOutput Types/Dissertation
000830262 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000830262 3367_ $$2ORCID$$aDISSERTATION
000830262 3367_ $$2BibTeX$$aPHDTHESIS
000830262 3367_ $$02$$2EndNote$$aThesis
000830262 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1496131355_8254
000830262 3367_ $$2DRIVER$$adoctoralThesis
000830262 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v360
000830262 502__ $$aRWTH Aachen, Diss., 2016$$bDr.$$cRWTH Aachen$$d2016
000830262 520__ $$aLow cost and low material consumption are the most import advantages of thin-film silicon solar cells. The possibility to manufacture in large scale makes this technology an alternative photovoltaic technology that is suitable for mass production comparable to multi- and monocrystalline silicon solar cells. Also, compared to other thin-film solar cells that are based on CdTe or CIGS there is neither a limitation in supply of rare elements like tellurium and indium, nor toxic cadmium is used. However, conversion efficiency remains in a rather low level. The improvement of conversion efficiency due to application of optically advanced materials as hydrogenated microcrystalline silicon oxide and the efficient usage of solar cell textures are topics of this work. Moreover, optical and electrical loss mechanisms in thin-film silicon solar cells are discussed. The application of superior materials combined with optimized front textures can contribute to the development of more efficient and economically competitive future thin-film silicon solar cells. In this work n- and p-type hydrogenated microcrystalline silicon oxide ($\mu$c-SiO$_{x}$:H)films were developed and implemented at different positions within a solar cell. This can be as a transparent contact or window layer in hydrogenated amorphous (a-Si:H) or microcrystalline silicon ($\mu$c-Si:H) single junction solar cells; as intermediate reflector layer in a-Si:H/$\mu$c-Si:H tandem solar cells or as part of a more effective back reflector insingle and tandem solar cells. Higher transparency, solar grade electrical conductivity, low-ohmic contact to sputtered ZnO:Al and tunable refractive index make n- and p-type $\mu$c-SiO$_{x}$:H a versatile and advanced material compared to commonly used doped layers. In this work n- and p-type $\mu$c-SiO$_{x}$:H layers were fabricated with a conductivity of up to 10$^{-2}$ S/cm and a Raman crystallinity of ~60%. Furthermore, a broad range of optical properties (band gap E$_{04}$ from 2.0 eV to 2.7 eV and refractive index n from 1.8 to 3.2) for n-type $\mu$c-SiO$_{0}$x:H (E$_{04}$ from 2.1 eV to 2.8 eV and n 1.6 to 2.6) for p-type $\mu$c-SiO$_{x}$:H films are presented. These properties can be tuned by adapting deposition parameters e.g. the CO$_{2}$/SiH$_{4}$ deposition gas ratio.[...]
000830262 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000830262 650_7 $$xDiss.
000830262 8564_ $$uhttps://juser.fz-juelich.de/record/830262/files/Energie_Umwelt_360.pdf$$yOpenAccess
000830262 8564_ $$uhttps://juser.fz-juelich.de/record/830262/files/Energie_Umwelt_360.gif?subformat=icon$$xicon$$yOpenAccess
000830262 8564_ $$uhttps://juser.fz-juelich.de/record/830262/files/Energie_Umwelt_360.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000830262 8564_ $$uhttps://juser.fz-juelich.de/record/830262/files/Energie_Umwelt_360.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000830262 8564_ $$uhttps://juser.fz-juelich.de/record/830262/files/Energie_Umwelt_360.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000830262 8564_ $$uhttps://juser.fz-juelich.de/record/830262/files/Energie_Umwelt_360.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000830262 909CO $$ooai:juser.fz-juelich.de:830262$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000830262 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000830262 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000830262 9141_ $$y2017
000830262 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136680$$aForschungszentrum Jülich$$b0$$kFZJ
000830262 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000830262 920__ $$lyes
000830262 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000830262 9801_ $$aFullTexts
000830262 980__ $$aphd
000830262 980__ $$aVDB
000830262 980__ $$aUNRESTRICTED
000830262 980__ $$abook
000830262 980__ $$aI:(DE-Juel1)IEK-5-20101013
000830262 981__ $$aI:(DE-Juel1)IMD-3-20101013