001     830262
005     20240712084510.0
020 _ _ |a 978-3-95806-209-2
024 7 _ |2 Handle
|a 2128/14557
024 7 _ |2 ISSN
|a 1866-1793
037 _ _ |a FZJ-2017-03835
041 _ _ |a English
100 1 _ |0 P:(DE-Juel1)136680
|a Zhang, Chao
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Interface and Topography Optimizationfor Thin-Film Silicon Solar Cells with DopedMicrocrystalline Silicon Oxide Layers
|f - 2016-11-24
260 _ _ |a Jülich
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
|c 2017
300 _ _ |a VII, 156 S.
336 7 _ |2 DataCite
|a Output Types/Dissertation
336 7 _ |0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|a Book
|m book
336 7 _ |2 ORCID
|a DISSERTATION
336 7 _ |2 BibTeX
|a PHDTHESIS
336 7 _ |0 2
|2 EndNote
|a Thesis
336 7 _ |0 PUB:(DE-HGF)11
|2 PUB:(DE-HGF)
|a Dissertation / PhD Thesis
|b phd
|m phd
|s 1496131355_8254
336 7 _ |2 DRIVER
|a doctoralThesis
490 0 _ |a Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment
|v 360
502 _ _ |a RWTH Aachen, Diss., 2016
|b Dr.
|c RWTH Aachen
|d 2016
520 _ _ |a Low cost and low material consumption are the most import advantages of thin-film silicon solar cells. The possibility to manufacture in large scale makes this technology an alternative photovoltaic technology that is suitable for mass production comparable to multi- and monocrystalline silicon solar cells. Also, compared to other thin-film solar cells that are based on CdTe or CIGS there is neither a limitation in supply of rare elements like tellurium and indium, nor toxic cadmium is used. However, conversion efficiency remains in a rather low level. The improvement of conversion efficiency due to application of optically advanced materials as hydrogenated microcrystalline silicon oxide and the efficient usage of solar cell textures are topics of this work. Moreover, optical and electrical loss mechanisms in thin-film silicon solar cells are discussed. The application of superior materials combined with optimized front textures can contribute to the development of more efficient and economically competitive future thin-film silicon solar cells. In this work n- and p-type hydrogenated microcrystalline silicon oxide ($\mu$c-SiO$_{x}$:H)films were developed and implemented at different positions within a solar cell. This can be as a transparent contact or window layer in hydrogenated amorphous (a-Si:H) or microcrystalline silicon ($\mu$c-Si:H) single junction solar cells; as intermediate reflector layer in a-Si:H/$\mu$c-Si:H tandem solar cells or as part of a more effective back reflector insingle and tandem solar cells. Higher transparency, solar grade electrical conductivity, low-ohmic contact to sputtered ZnO:Al and tunable refractive index make n- and p-type $\mu$c-SiO$_{x}$:H a versatile and advanced material compared to commonly used doped layers. In this work n- and p-type $\mu$c-SiO$_{x}$:H layers were fabricated with a conductivity of up to 10$^{-2}$ S/cm and a Raman crystallinity of ~60%. Furthermore, a broad range of optical properties (band gap E$_{04}$ from 2.0 eV to 2.7 eV and refractive index n from 1.8 to 3.2) for n-type $\mu$c-SiO$_{0}$x:H (E$_{04}$ from 2.1 eV to 2.8 eV and n 1.6 to 2.6) for p-type $\mu$c-SiO$_{x}$:H films are presented. These properties can be tuned by adapting deposition parameters e.g. the CO$_{2}$/SiH$_{4}$ deposition gas ratio.[...]
536 _ _ |0 G:(DE-HGF)POF3-121
|a 121 - Solar cells of the next generation (POF3-121)
|c POF3-121
|f POF III
|x 0
650 _ 7 |x Diss.
856 4 _ |u https://juser.fz-juelich.de/record/830262/files/Energie_Umwelt_360.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/830262/files/Energie_Umwelt_360.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/830262/files/Energie_Umwelt_360.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/830262/files/Energie_Umwelt_360.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/830262/files/Energie_Umwelt_360.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/830262/files/Energie_Umwelt_360.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:830262
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)136680
|a Forschungszentrum Jülich
|b 0
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-121
|1 G:(DE-HGF)POF3-120
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Erneuerbare Energien
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a phd
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21