001     830425
005     20240711101510.0
024 7 _ |a 10.1149/2.0061709jes
|2 doi
024 7 _ |a 0013-4651
|2 ISSN
024 7 _ |a 0096-4743
|2 ISSN
024 7 _ |a 0096-4786
|2 ISSN
024 7 _ |a 1945-7111
|2 ISSN
024 7 _ |a 2128/14910
|2 Handle
024 7 _ |a WOS:000404397300137
|2 WOS
037 _ _ |a FZJ-2017-03974
082 _ _ |a 540
100 1 _ |a Schulte, Wiebke
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Local Evaluation of Processed Membrane Electrode Assemblies by Scanning Electrochemical Microscopy
260 _ _ |a Pennington, NJ
|c 2017
|b Electrochemical Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1499864602_10756
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Gas diffusion electrodes (GDEs) for high-temperature polymer electrolyte fuel cells with different sizes of the used binder particles were evaluated by scanning electrochemical microscopy (SECM) with shear force (SF) supplement. The SF data provide means of checking the substrate morphology with respect to cracks formed during the drying process and with respect to aggregates from used binder of poly(fluoroethylene) (PTFE) simultaneously to the electrochemical data. Electron microscopy results show that a GDE prepared with smaller PTFE particles exhibits less PTFE aggregation and more regular cracks. The SECM images show a more homogeneous distribution and higher level of oxygen reduction reaction activity for the GDE prepared with smaller PTFE particles. The quantitative comparison is enabled by the SF setup that maintains a constant working distance toward the sample in the variant of the redox competition mode, in which a cyclic voltammogram was recorded for every grid position of the microelectrode probe. Mass transport limitations of oxygen during the experiment are avoided by dedicated shape of the microelectrode body. Images of microelectrode currents at specific potentials were extracted to map the local electrocatalytic activity of the GDE. The GDEs were processed to membrane electrode assemblies and applied in HT-PEFC single cell tests. The polarization curve agree with the SECM results that GDEs produced with smaller PTFE particles favor the MEA performance.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Liu, Shuai
|0 P:(DE-Juel1)168241
|b 1
700 1 _ |a Plettenberg, Inka
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kuhri, Susanne
|0 P:(DE-Juel1)166247
|b 3
700 1 _ |a Lüke, Wiebke
|0 P:(DE-Juel1)128533
|b 4
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 5
|e Corresponding author
700 1 _ |a Wittstock, Gunther
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1149/2.0061709jes
|g Vol. 164, no. 7, p. F873 - F878
|0 PERI:(DE-600)2002179-3
|n 7
|p F873 - F878
|t Journal of the Electrochemical Society
|v 164
|y 2017
|x 0013-4651
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/830425/files/J.%20Electrochem.%20Soc.-2017-Schulte-F873-8.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/830425/files/J.%20Electrochem.%20Soc.-2017-Schulte-F873-8.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/830425/files/J.%20Electrochem.%20Soc.-2017-Schulte-F873-8.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/830425/files/J.%20Electrochem.%20Soc.-2017-Schulte-F873-8.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/830425/files/J.%20Electrochem.%20Soc.-2017-Schulte-F873-8.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/830425/files/J.%20Electrochem.%20Soc.-2017-Schulte-F873-8.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:830425
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168241
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129883
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21