000834315 001__ 834315
000834315 005__ 20240711114045.0
000834315 0247_ $$2tecpub$$atecpub:2470
000834315 0247_ $$2Handle$$a2128/14735
000834315 0247_ $$2doi$$a10.1088/1741-4326/aa6f71
000834315 0247_ $$2WOS$$aWOS:000407854600007
000834315 0247_ $$2altmetric$$aaltmetric:20925657
000834315 037__ $$aFZJ-2017-04294
000834315 041__ $$aEnglish
000834315 082__ $$a530
000834315 1001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b0$$eCorresponding author
000834315 245__ $$aDevelopment of advanced high heat flux and plasma-facing materials
000834315 260__ $$aVienna$$bIAEA$$c2017
000834315 3367_ $$2DRIVER$$aarticle
000834315 3367_ $$2DataCite$$aOutput Types/Journal article
000834315 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1502289969_32595
000834315 3367_ $$2BibTeX$$aARTICLE
000834315 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834315 3367_ $$00$$2EndNote$$aJournal Article
000834315 520__ $$aPlasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling materials, thereby minimizing the release of tritium under normal operation conditions. Finally, solutions for the unique bonding requirements of dissimilar material used in a fusion reactor are demonstrated by describing the current status and prospects of functionally graded materials.
000834315 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000834315 588__ $$aDataset connected to tecpub
000834315 7001_ $$0P:(DE-HGF)0$$aRieth, M.$$b1
000834315 7001_ $$0P:(DE-HGF)0$$aAktaa, J.$$b2
000834315 7001_ $$0P:(DE-HGF)0$$aChikada, T.$$b3
000834315 7001_ $$0P:(DE-Juel1)141929$$aHoffmann, J.$$b4
000834315 7001_ $$0P:(DE-Juel1)157772$$aHouben, A.$$b5
000834315 7001_ $$0P:(DE-HGF)0$$aKurishita, H.$$b6
000834315 7001_ $$0P:(DE-Juel1)159391$$aJin, X.$$b7
000834315 7001_ $$0P:(DE-HGF)0$$aLi, M.$$b8
000834315 7001_ $$0P:(DE-Juel1)130090$$aLitnovsky, A.$$b9
000834315 7001_ $$0P:(DE-HGF)0$$aMatsuo, S.$$b10
000834315 7001_ $$0P:(DE-HGF)0$$avon Müller, A.$$b11
000834315 7001_ $$0P:(DE-HGF)0$$aNikolic, V.$$b12
000834315 7001_ $$0P:(DE-HGF)0$$aPalacios, T.$$b13
000834315 7001_ $$0P:(DE-HGF)0$$aPippan, R.$$b14
000834315 7001_ $$0P:(DE-HGF)0$$aQu, D.$$b15
000834315 7001_ $$0P:(DE-HGF)0$$aReiser, J.$$b16
000834315 7001_ $$0P:(DE-HGF)0$$aRiesch, J.$$b17
000834315 7001_ $$0P:(DE-HGF)0$$aShikama, T.$$b18
000834315 7001_ $$0P:(DE-HGF)0$$aStieglitz, R.$$b19
000834315 7001_ $$0P:(DE-HGF)0$$aWeber, T.$$b20
000834315 7001_ $$0P:(DE-HGF)0$$aWurster, S.$$b21
000834315 7001_ $$0P:(DE-HGF)0$$aYou, J.-H.$$b22
000834315 7001_ $$0P:(DE-HGF)0$$aZhou, Z.$$b23
000834315 7001_ $$0P:(DE-HGF)0$$aHoffmann, A.$$b24
000834315 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/aa6f71$$n9$$p092007$$tNuclear fusion$$v57$$x0029-5515$$y2017
000834315 8564_ $$uhttps://juser.fz-juelich.de/record/834315/files/Linsmeier_2017_Nucl._Fusion_57_092007.pdf$$yOpenAccess
000834315 8564_ $$uhttps://juser.fz-juelich.de/record/834315/files/Linsmeier_2017_Nucl._Fusion_57_092007.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000834315 8767_ $$8RLNK502261979$$92017-03-29$$d2017-04-11$$ePermission$$jZahlung erfolgt
000834315 909CO $$ooai:juser.fz-juelich.de:834315$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000834315 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000834315 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834315 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000834315 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2015
000834315 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834315 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834315 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834315 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000834315 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000834315 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000834315 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000834315 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000834315 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000834315 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834315 9141_ $$y2017
000834315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b0$$kFZJ
000834315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157772$$aForschungszentrum Jülich$$b5$$kFZJ
000834315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130090$$aForschungszentrum Jülich$$b9$$kFZJ
000834315 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000834315 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000834315 9201_ $$0I:(DE-Juel1)PTJ-DEQ-20110722$$kPTJ-DEQ$$lZentrale Dienstleistungen, Entwicklung, Qualität$$x1
000834315 9801_ $$aAPC
000834315 9801_ $$aFullTexts
000834315 980__ $$ajournal
000834315 980__ $$aVDB
000834315 980__ $$aI:(DE-Juel1)IEK-4-20101013
000834315 980__ $$aI:(DE-Juel1)PTJ-DEQ-20110722
000834315 980__ $$aAPC
000834315 980__ $$aUNRESTRICTED
000834315 981__ $$aI:(DE-Juel1)IFN-1-20101013