001     834315
005     20240711114045.0
024 7 _ |2 tecpub
|a tecpub:2470
024 7 _ |2 Handle
|a 2128/14735
024 7 _ |2 doi
|a 10.1088/1741-4326/aa6f71
024 7 _ |2 WOS
|a WOS:000407854600007
024 7 _ |a altmetric:20925657
|2 altmetric
037 _ _ |a FZJ-2017-04294
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)157640
|a Linsmeier, Ch.
|b 0
|e Corresponding author
245 _ _ |a Development of advanced high heat flux and plasma-facing materials
260 _ _ |a Vienna
|b IAEA
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1502289969_32595
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling materials, thereby minimizing the release of tritium under normal operation conditions. Finally, solutions for the unique bonding requirements of dissimilar material used in a fusion reactor are demonstrated by describing the current status and prospects of functionally graded materials.
536 _ _ |0 G:(DE-HGF)POF3-113
|a 113 - Methods and Concepts for Material Development (POF3-113)
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to tecpub
700 1 _ |0 P:(DE-HGF)0
|a Rieth, M.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Aktaa, J.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Chikada, T.
|b 3
700 1 _ |0 P:(DE-Juel1)141929
|a Hoffmann, J.
|b 4
700 1 _ |0 P:(DE-Juel1)157772
|a Houben, A.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Kurishita, H.
|b 6
700 1 _ |0 P:(DE-Juel1)159391
|a Jin, X.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Li, M.
|b 8
700 1 _ |0 P:(DE-Juel1)130090
|a Litnovsky, A.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Matsuo, S.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a von Müller, A.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Nikolic, V.
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Palacios, T.
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Pippan, R.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Qu, D.
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Reiser, J.
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Riesch, J.
|b 17
700 1 _ |0 P:(DE-HGF)0
|a Shikama, T.
|b 18
700 1 _ |0 P:(DE-HGF)0
|a Stieglitz, R.
|b 19
700 1 _ |0 P:(DE-HGF)0
|a Weber, T.
|b 20
700 1 _ |0 P:(DE-HGF)0
|a Wurster, S.
|b 21
700 1 _ |0 P:(DE-HGF)0
|a You, J.-H.
|b 22
700 1 _ |0 P:(DE-HGF)0
|a Zhou, Z.
|b 23
700 1 _ |0 P:(DE-HGF)0
|a Hoffmann, A.
|b 24
773 _ _ |0 PERI:(DE-600)2037980-8
|a 10.1088/1741-4326/aa6f71
|n 9
|p 092007
|t Nuclear fusion
|v 57
|x 0029-5515
|y 2017
856 4 _ |u https://juser.fz-juelich.de/record/834315/files/Linsmeier_2017_Nucl._Fusion_57_092007.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/834315/files/Linsmeier_2017_Nucl._Fusion_57_092007.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:834315
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)157640
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)157772
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130090
|a Forschungszentrum Jülich
|b 9
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-113
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NUCL FUSION : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)PTJ-DEQ-20110722
|k PTJ-DEQ
|l Zentrale Dienstleistungen, Entwicklung, Qualität
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)PTJ-DEQ-20110722
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21