Journal Article FZJ-2017-04353

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Microstructure, Mechanical Behavior and Flow Resistance of Freeze Cast Pourous 3YSZ for Membrane Applications

 ;  ;  ;

2017
Elsevier Science Amsterdam [u.a.]

Journal of the European Ceramic Society 37, 3167-3176 () [10.1016/j.jeurceramsoc.2017.03.056]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Freeze-cast porous 3YSZ with different porosities were characterized as mechanical load carrying supports for oxygen transport membrane applications. Porosity influence on mechanical properties, i.e. elastic modulus and fracture stresses was assessed with biaxial ring-on-ring bending tests. The flow resistance was characterized in terms of the pressure drop using different gases to reveal the effect of the porous support on the accessing of the inlet gas flow to the functional dense membrane layer. Both properties were discussed in terms of the influence of porosity and pore structure, and compared with the properties of porous 3YSZ produced via pressing and sintering.

Classification:

Contributing Institute(s):
  1. Werkstoffstruktur und -eigenschaften (IEK-2)
Research Program(s):
  1. 111 - Efficient and Flexible Power Plants (POF3-111) (POF3-111)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2017
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-1
Workflow collections > Public records
IEK > IEK-2
Publications database

 Record created 2017-06-29, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)