000834771 001__ 834771 000834771 005__ 20210129230733.0 000834771 0247_ $$2doi$$a10.1016/j.mee.2017.05.011 000834771 0247_ $$2ISSN$$a0167-9317 000834771 0247_ $$2ISSN$$a1873-5568 000834771 0247_ $$2WOS$$aWOS:000404703800033 000834771 037__ $$aFZJ-2017-04662 000834771 041__ $$aEnglish 000834771 082__ $$a620 000834771 1001_ $$0P:(DE-HGF)0$$aAfanas'ev, V. V.$$b0$$eCorresponding author 000834771 245__ $$aOxidation-induced electron barrier enhancement at interfaces of Ge-based semiconductors (Ge, Ge$_{1−x}$ Sn$_{x}$ , Si$_{y}$ Ge$_{1−x-y}$ Sn$_{x}$ ) with Al$_{2}$ O$_{3}$ 000834771 260__ $$a[S.l.]$$bElsevier$$c2017 000834771 3367_ $$2DRIVER$$aarticle 000834771 3367_ $$2DataCite$$aOutput Types/Journal article 000834771 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1500364146_4952 000834771 3367_ $$2BibTeX$$aARTICLE 000834771 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000834771 3367_ $$00$$2EndNote$$aJournal Article 000834771 520__ $$aExperiments on internal photoemission of electrons at interfaces of SiyGe1−x−ySnx binary and ternary alloys (0≤ x ≤ 0.11; 0 ≤ y ≤ 0.19) with amorphous insulating Al2O3 reveal that the application of an additional oxidationstep (5 min in dry O3 at 300 °C) after atomic layer deposition of first ≈1 nm of alumina results in a significantincrease of the electron barrier height (by ≈0.4–0.5 eV) as compared to the conventionally grown Al2O3 layers.Furthermore, this supplemental oxidation step facilitates the removal of Ge sub-oxides from the interface. Theobserved electron barrier enhancement is suggested to be caused by formation of awide gap germanate interlayerbetween the Ge-based semiconductors and alumina. © 2017 Published by Elsevier B.V. 000834771 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0 000834771 588__ $$aDataset connected to CrossRef 000834771 7001_ $$0P:(DE-Juel1)161530$$aSchulte-Braucks, C.$$b1 000834771 7001_ $$0P:(DE-HGF)0$$aWirths, S.$$b2 000834771 7001_ $$0P:(DE-Juel1)128631$$aSchubert, J.$$b3 000834771 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b4 000834771 773__ $$0PERI:(DE-600)1497065-x$$a10.1016/j.mee.2017.05.011$$gVol. 178, p. 141 - 144$$p141 - 144$$tMicroelectronic engineering$$v178$$x0167-9317$$y2017 000834771 8564_ $$uhttps://juser.fz-juelich.de/record/834771/files/1-s2.0-S0167931717302083-main.pdf$$yRestricted 000834771 8564_ $$uhttps://juser.fz-juelich.de/record/834771/files/1-s2.0-S0167931717302083-main.gif?subformat=icon$$xicon$$yRestricted 000834771 8564_ $$uhttps://juser.fz-juelich.de/record/834771/files/1-s2.0-S0167931717302083-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000834771 8564_ $$uhttps://juser.fz-juelich.de/record/834771/files/1-s2.0-S0167931717302083-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000834771 8564_ $$uhttps://juser.fz-juelich.de/record/834771/files/1-s2.0-S0167931717302083-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000834771 8564_ $$uhttps://juser.fz-juelich.de/record/834771/files/1-s2.0-S0167931717302083-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000834771 909CO $$ooai:juser.fz-juelich.de:834771$$pVDB 000834771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161530$$aForschungszentrum Jülich$$b1$$kFZJ 000834771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138778$$aForschungszentrum Jülich$$b2$$kFZJ 000834771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich$$b3$$kFZJ 000834771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b4$$kFZJ 000834771 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000834771 9141_ $$y2017 000834771 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000834771 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000834771 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROELECTRON ENG : 2015 000834771 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000834771 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000834771 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000834771 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000834771 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000834771 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000834771 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000834771 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000834771 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000834771 920__ $$lyes 000834771 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 000834771 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000834771 980__ $$ajournal 000834771 980__ $$aVDB 000834771 980__ $$aI:(DE-Juel1)PGI-9-20110106 000834771 980__ $$aI:(DE-82)080009_20140620 000834771 980__ $$aUNRESTRICTED