000834817 001__ 834817
000834817 005__ 20240712100900.0
000834817 0247_ $$2doi$$a10.1175/JAS-D-16-0367.1
000834817 0247_ $$2ISSN$$a0022-4928
000834817 0247_ $$2ISSN$$a0095-9634
000834817 0247_ $$2ISSN$$a1520-0469
000834817 0247_ $$2Handle$$a2128/15787
000834817 0247_ $$2WOS$$aWOS:000409133100015
000834817 037__ $$aFZJ-2017-04708
000834817 041__ $$aEnglish
000834817 082__ $$a550
000834817 1001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b0$$eCorresponding author$$ufzj
000834817 245__ $$aRegionally resolved diagnostic of transport: A simplified forward model for CO$_{2}$
000834817 260__ $$aBoston, Mass.$$bAmerican Meteorological Soc.$$c2017
000834817 3367_ $$2DRIVER$$aarticle
000834817 3367_ $$2DataCite$$aOutput Types/Journal article
000834817 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510065060_4910
000834817 3367_ $$2BibTeX$$aARTICLE
000834817 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834817 3367_ $$00$$2EndNote$$aJournal Article
000834817 520__ $$aSimply diagnostic tools are useful to understand transport processes in complex chemistry transport models (CTMs). For this purpose, a combined use of the air-mass origin fractions (AOFs) and regionally resolved mean ages (RMAs) is presented. This approach merges the concept of the origin of air with the well-known theory of the mean age of air (AoA) for different regions covering the whole Earth. We show how the AoA calculated relative to the Earth’s surface can be decomposed into regionally resolved components (i.e. into RMAs). Using both AOFs and RMAs, we discuss differences in the seasonality of transport from the northern and southern hemispheres into the tropical tropopause layer (TTL), the asymmetries of the interhemispheric exchange as well as differences in relation to the continental or oceanic origin of air. Furthermore, a simplified transport model for a chemically passive species (tracer) is formulated, which has some potential to approximate the full transport within a CTM. This analytic approach uses the AOFs as well as the RMAs as parameters to propagate a tracer prescribed on the Earth’s surface (lower boundary condition). This method is exactly valid for sources which change linearly with time in each of the considered regions. We analyze how well this approach approximates the propagation of CO2 from the planetary boundary layer (PBL) into the whole atmosphere. The CO2 values in the PBL are specified by the CarbonTracker data set. We discuss how this approach can be used for inverse modeling of CO2.
000834817 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000834817 588__ $$aDataset connected to CrossRef
000834817 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b1$$ufzj
000834817 7001_ $$0P:(DE-Juel1)156119$$aTao, Mengchu$$b2$$ufzj
000834817 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b3$$ufzj
000834817 773__ $$0PERI:(DE-600)2025890-2$$a10.1175/JAS-D-16-0367.1$$gp. JAS-D-16-0367.1$$p2689$$tJournal of the atmospheric sciences$$v $$x1520-0469$$y2017
000834817 8564_ $$uhttps://juser.fz-juelich.de/record/834817/files/jas-d-16-0367.1.pdf$$yOpenAccess
000834817 8564_ $$uhttps://juser.fz-juelich.de/record/834817/files/jas-d-16-0367.1.gif?subformat=icon$$xicon$$yOpenAccess
000834817 8564_ $$uhttps://juser.fz-juelich.de/record/834817/files/jas-d-16-0367.1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000834817 8564_ $$uhttps://juser.fz-juelich.de/record/834817/files/jas-d-16-0367.1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000834817 8564_ $$uhttps://juser.fz-juelich.de/record/834817/files/jas-d-16-0367.1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000834817 8564_ $$uhttps://juser.fz-juelich.de/record/834817/files/jas-d-16-0367.1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000834817 8767_ $$8PC-20998$$92017-07-20$$d2017-07-20$$ePage charges$$jZahlung erfolgt$$pJAS-D-16-0367$$zUSD 2175,-
000834817 8767_ $$8PC-20998$$92017-07-20$$d2017-07-20$$eHybrid-OA$$jZahlung erfolgt$$zUSD 800,-
000834817 909CO $$ooai:juser.fz-juelich.de:834817$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000834817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b0$$kFZJ
000834817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b1$$kFZJ
000834817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156119$$aForschungszentrum Jülich$$b2$$kFZJ
000834817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b3$$kFZJ
000834817 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000834817 9141_ $$y2017
000834817 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834817 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000834817 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000834817 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ATMOS SCI : 2015
000834817 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834817 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834817 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834817 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000834817 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000834817 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000834817 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000834817 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834817 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000834817 9801_ $$aAPC
000834817 9801_ $$aFullTexts
000834817 980__ $$ajournal
000834817 980__ $$aVDB
000834817 980__ $$aUNRESTRICTED
000834817 980__ $$aI:(DE-Juel1)IEK-7-20101013
000834817 980__ $$aAPC
000834817 981__ $$aI:(DE-Juel1)ICE-4-20101013