000835081 001__ 835081
000835081 005__ 20240610120526.0
000835081 0247_ $$2doi$$a10.1088/1361-6668/aa73ad
000835081 0247_ $$2ISSN$$a0953-2048
000835081 0247_ $$2ISSN$$a1361-6668
000835081 0247_ $$2Handle$$a2128/14933
000835081 0247_ $$2WOS$$aWOS:000405068200001
000835081 0247_ $$2altmetric$$aaltmetric:22139593
000835081 037__ $$aFZJ-2017-04949
000835081 041__ $$aEnglish
000835081 082__ $$a530
000835081 1001_ $$0P:(DE-Juel1)130633$$aFaley, M. I.$$b0$$eCorresponding author
000835081 245__ $$aHigh- T$_{c}$ SQUID biomagnetometers
000835081 260__ $$aBristol$$bIOP Publ.$$c2017
000835081 3367_ $$2DRIVER$$aarticle
000835081 3367_ $$2DataCite$$aOutput Types/Journal article
000835081 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553606930_24179
000835081 3367_ $$2BibTeX$$aARTICLE
000835081 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000835081 3367_ $$00$$2EndNote$$aJournal Article
000835081 520__ $$aIn this paper, we review the preparation technology, integration in measurement systems and tests of high-Tc superconducting quantum interference devices (SQUIDs) intended for biomagnetic applications. A focus is on developments specific to Forschungszentrum Jülich GmbH, Chalmers University of Technology, MedTech West, and the University of Gothenburg, while placing these results in the perspective of those achieved elsewhere. Sensor fabrication, including the deposition and structuring of epitaxial oxide heterostructures, materials for substrates, epitaxial bilayer buffers, bicrystal and step-edge Josephson junctions, and multilayer flux transformers are detailed. The properties of the epitaxial multilayer high-Tc direct current SQUID sensors, including their integration in measurement systems with special electronics and liquid nitrogen cryostats, are presented in the context of biomagnetic recording. Applications that include magnetic nanoparticle based molecular diagnostics, magnetocardiography, and magnetoencephalography are presented as showcases of high-Tc biomagnetic systems. We conclude by outlining future challenges.
000835081 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000835081 588__ $$aDataset connected to CrossRef
000835081 7001_ $$0P:(DE-Juel1)131757$$aDammers, J.$$b1
000835081 7001_ $$0P:(DE-HGF)0$$aMaslennikov, Y. V.$$b2
000835081 7001_ $$00000-0002-4441-2360$$aSchneiderman, J. F.$$b3
000835081 7001_ $$00000-0001-8332-3742$$aWinkler, D.$$b4
000835081 7001_ $$00000-0002-1563-1257$$aKoshelets, V. P.$$b5
000835081 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b6$$ufzj
000835081 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, R. E.$$b7
000835081 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/aa73ad$$gVol. 30, no. 8, p. 083001 -$$n8$$p083001$$tSuperconductor science and technology$$v30$$x1361-6668$$y2017
000835081 8564_ $$uhttps://juser.fz-juelich.de/record/835081/files/Faley_2017_Supercond._Sci._Technol._30_083001.pdf$$yOpenAccess
000835081 8564_ $$uhttps://juser.fz-juelich.de/record/835081/files/Faley_2017_Supercond._Sci._Technol._30_083001.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000835081 909CO $$ooai:juser.fz-juelich.de:835081$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000835081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b0$$kFZJ
000835081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131757$$aForschungszentrum Jülich$$b1$$kFZJ
000835081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b6$$kFZJ
000835081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
000835081 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000835081 9141_ $$y2017
000835081 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000835081 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000835081 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000835081 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2015
000835081 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000835081 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000835081 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000835081 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000835081 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000835081 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000835081 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000835081 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000835081 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000835081 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000835081 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000835081 920__ $$lyes
000835081 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000835081 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000835081 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x2
000835081 9801_ $$aFullTexts
000835081 980__ $$ajournal
000835081 980__ $$aVDB
000835081 980__ $$aI:(DE-Juel1)PGI-5-20110106
000835081 980__ $$aI:(DE-Juel1)INM-4-20090406
000835081 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000835081 980__ $$aUNRESTRICTED
000835081 981__ $$aI:(DE-Juel1)ER-C-1-20170209