000835081 001__ 835081 000835081 005__ 20240610120526.0 000835081 0247_ $$2doi$$a10.1088/1361-6668/aa73ad 000835081 0247_ $$2ISSN$$a0953-2048 000835081 0247_ $$2ISSN$$a1361-6668 000835081 0247_ $$2Handle$$a2128/14933 000835081 0247_ $$2WOS$$aWOS:000405068200001 000835081 0247_ $$2altmetric$$aaltmetric:22139593 000835081 037__ $$aFZJ-2017-04949 000835081 041__ $$aEnglish 000835081 082__ $$a530 000835081 1001_ $$0P:(DE-Juel1)130633$$aFaley, M. I.$$b0$$eCorresponding author 000835081 245__ $$aHigh- T$_{c}$ SQUID biomagnetometers 000835081 260__ $$aBristol$$bIOP Publ.$$c2017 000835081 3367_ $$2DRIVER$$aarticle 000835081 3367_ $$2DataCite$$aOutput Types/Journal article 000835081 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553606930_24179 000835081 3367_ $$2BibTeX$$aARTICLE 000835081 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000835081 3367_ $$00$$2EndNote$$aJournal Article 000835081 520__ $$aIn this paper, we review the preparation technology, integration in measurement systems and tests of high-Tc superconducting quantum interference devices (SQUIDs) intended for biomagnetic applications. A focus is on developments specific to Forschungszentrum Jülich GmbH, Chalmers University of Technology, MedTech West, and the University of Gothenburg, while placing these results in the perspective of those achieved elsewhere. Sensor fabrication, including the deposition and structuring of epitaxial oxide heterostructures, materials for substrates, epitaxial bilayer buffers, bicrystal and step-edge Josephson junctions, and multilayer flux transformers are detailed. The properties of the epitaxial multilayer high-Tc direct current SQUID sensors, including their integration in measurement systems with special electronics and liquid nitrogen cryostats, are presented in the context of biomagnetic recording. Applications that include magnetic nanoparticle based molecular diagnostics, magnetocardiography, and magnetoencephalography are presented as showcases of high-Tc biomagnetic systems. We conclude by outlining future challenges. 000835081 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0 000835081 588__ $$aDataset connected to CrossRef 000835081 7001_ $$0P:(DE-Juel1)131757$$aDammers, J.$$b1 000835081 7001_ $$0P:(DE-HGF)0$$aMaslennikov, Y. V.$$b2 000835081 7001_ $$00000-0002-4441-2360$$aSchneiderman, J. F.$$b3 000835081 7001_ $$00000-0001-8332-3742$$aWinkler, D.$$b4 000835081 7001_ $$00000-0002-1563-1257$$aKoshelets, V. P.$$b5 000835081 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b6$$ufzj 000835081 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, R. E.$$b7 000835081 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/aa73ad$$gVol. 30, no. 8, p. 083001 -$$n8$$p083001$$tSuperconductor science and technology$$v30$$x1361-6668$$y2017 000835081 8564_ $$uhttps://juser.fz-juelich.de/record/835081/files/Faley_2017_Supercond._Sci._Technol._30_083001.pdf$$yOpenAccess 000835081 8564_ $$uhttps://juser.fz-juelich.de/record/835081/files/Faley_2017_Supercond._Sci._Technol._30_083001.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000835081 909CO $$ooai:juser.fz-juelich.de:835081$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000835081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b0$$kFZJ 000835081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131757$$aForschungszentrum Jülich$$b1$$kFZJ 000835081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b6$$kFZJ 000835081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ 000835081 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000835081 9141_ $$y2017 000835081 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000835081 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000835081 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000835081 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2015 000835081 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000835081 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000835081 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000835081 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000835081 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000835081 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000835081 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000835081 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000835081 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000835081 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000835081 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000835081 920__ $$lyes 000835081 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0 000835081 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1 000835081 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x2 000835081 9801_ $$aFullTexts 000835081 980__ $$ajournal 000835081 980__ $$aVDB 000835081 980__ $$aI:(DE-Juel1)PGI-5-20110106 000835081 980__ $$aI:(DE-Juel1)INM-4-20090406 000835081 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000835081 980__ $$aUNRESTRICTED 000835081 981__ $$aI:(DE-Juel1)ER-C-1-20170209