001     836104
005     20240712112820.0
024 7 _ |a 10.1002/cphc.201700779
|2 doi
024 7 _ |a 1439-4235
|2 ISSN
024 7 _ |a 1439-7641
|2 ISSN
024 7 _ |a pmid:28719100
|2 pmid
024 7 _ |a WOS:000411193200001
|2 WOS
024 7 _ |a altmetric:23978461
|2 altmetric
037 _ _ |a FZJ-2017-05228
041 _ _ |a English
082 _ _ |a 540
100 1 _ |0 P:(DE-HGF)0
|a Hundshammer, Christian
|b 0
245 _ _ |a Deuteration of hyperpolarized 13 c-labelled zymonic and enables sensitivity-enhanced dynamic MRI of pH
260 _ _ |a Weinheim
|b Wiley-VCH Verl.
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1520430324_5948
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Aberrant pH is characteristic of many pathologies such as ischemia, inflammation or cancer. Therefore, a non-invasive and spatially resolved pH determination is valuable for disease diagnosis, characterization of response to treatment and the design of pH-sensitive drug-delivery systems. We recently introduced hyperpolarized [1,5-13C2]zymonic acid (ZA) as a novel MRI probe of extracellular pH utilizing dissolution dynamic polarization (DNP) for a more than 10000-fold signal enhancement of the MRI signal. Here we present a strategy to enhance the sensitivity of this approach by deuteration of ZA yielding [1,5-13C2, 3,6,6,6-D4]zymonic acid (ZAd), which prolongs the liquid state spin lattice relaxation time (T1) by up to 39 % in vitro. Measurements with ZA and ZAd on subcutaneous MAT B III adenocarcinoma in rats show that deuteration increases the signal-to-noise ratio (SNR) by up to 46 % in vivo. Furthermore, we demonstrate a proof of concept for real-time imaging of dynamic pH changes in vitro using ZAd, potentially allowing for the characterization of rapid acidification/basification processes in vivo.
536 _ _ |0 G:(DE-HGF)POF3-131
|a 131 - Electrochemical Storage (POF3-131)
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Düwel, Stephan
|b 1
700 1 _ |0 P:(DE-Juel1)192562
|a Köcher, Simone Swantje
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Gersch, Malte
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Feuerecker, Benedikt
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Scheurer, Christoph
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Haase, Axel
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Glaser, Steffen J.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Schwaiger, Markus
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Schilling, Franz
|b 9
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2025223-7
|a 10.1002/cphc.201700779
|n 18
|p 2422–2425
|t ChemPhysChem
|v 18
|x 1439-4235
|y 2017
856 4 _ |u https://juser.fz-juelich.de/record/836104/files/Hundshammer_et_al-2017-ChemPhysChem.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836104/files/Hundshammer_et_al-2017-ChemPhysChem.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836104/files/Hundshammer_et_al-2017-ChemPhysChem.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836104/files/Hundshammer_et_al-2017-ChemPhysChem.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836104/files/Hundshammer_et_al-2017-ChemPhysChem.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836104/files/Hundshammer_et_al-2017-ChemPhysChem.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:836104
|p VDB
910 1 _ |0 I:(DE-588b)36241-4
|6 P:(DE-HGF)0
|a Technische Universität München
|b 0
|k TUM
910 1 _ |0 I:(DE-588b)36241-4
|6 P:(DE-HGF)0
|a Technische Universität München
|b 1
|k TUM
910 1 _ |0 I:(DE-588b)36241-4
|6 P:(DE-Juel1)192562
|a Technische Universität München
|b 2
|k TUM
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)192562
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)36241-4
|6 P:(DE-HGF)0
|a Technische Universität München
|b 3
|k TUM
910 1 _ |0 I:(DE-588b)36241-4
|6 P:(DE-HGF)0
|a Technische Universität München
|b 4
|k TUM
910 1 _ |0 I:(DE-588b)36241-4
|6 P:(DE-HGF)0
|a Technische Universität München
|b 5
|k TUM
910 1 _ |0 I:(DE-588b)36241-4
|6 P:(DE-HGF)0
|a Technische Universität München
|b 6
|k TUM
910 1 _ |0 I:(DE-588b)36241-4
|6 P:(DE-HGF)0
|a Technische Universität München
|b 8
|k TUM
913 1 _ |0 G:(DE-HGF)POF3-131
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b CHEMPHYSCHEM : 2015
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21