Journal Article FZJ-2017-05978

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Rate Dependent Tension-Compression-Asymmetry of Ti-61.8at%Al Alloy with Long Period Superstructures at 1050 °C

 ;  ;  ;

2017
Elsevier Amsterdam

Materials science and engineering / A 700, 503 - 511 () [10.1016/j.msea.2017.06.041]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Al-rich TiAl alloy system has recently become a focus of interest due to its higher oxidation resistance, 20% lower density and higher (200 °C more) operating temperature application possibility over conventional Ti-rich TiAl alloys. Tension-compression asymmetry of such type of high temperature material is an integral part of modern engineering problems. Rate dependent asymmetric phenomena of such alloys is specially important at high homologous temperature because of the appearance of one or more long period superstructures. However, micromechanical modeling endeavor of Al-rich family has not been attempted so far. In this work, we have presented two internal variable based phenomenological crystal viscoplasticity modeling approach for predicting rate dependent tension-compression asymmetry of single crystal like lamellar Ti-61.8at%Al binary alloy at hot compression state (1050 °C) by employing finite strain and finite rotation framework. Our material parameters were based on calibrating three different sets of compressive stain rate controlled plasticity data in two lamellar directions. Based on the set of identified material parameters we have predicted qualitatively the evolution of tension compression asymmetry of this alloy. It is found that tension-compression-asymmetry evolution is anisotropic and highly pronounced throughout the deformation process influenced by the lamellar morphology and long period superstructures. Slip system level operative stresses show that the slip domination and activity, more specifically, major contributing systems are different in tension and compression.

Classification:

Contributing Institute(s):
  1. Werkstoffstruktur und -eigenschaften (IEK-2)
Research Program(s):
  1. 111 - Efficient and Flexible Power Plants (POF3-111) (POF3-111)

Appears in the scientific report 2017
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-1
Workflow collections > Public records
IEK > IEK-2
Publications database

 Record created 2017-08-17, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)