000837189 001__ 837189
000837189 005__ 20210129231221.0
000837189 0247_ $$2doi$$a10.1021/acsnano.7b02113
000837189 0247_ $$2ISSN$$a1936-0851
000837189 0247_ $$2ISSN$$a1936-086X
000837189 0247_ $$2WOS$$aWOS:000406649700040
000837189 037__ $$aFZJ-2017-06168
000837189 041__ $$aEnglish
000837189 082__ $$a540
000837189 1001_ $$0P:(DE-Juel1)159254$$aBaeumer, Christoph$$b0$$eCorresponding author
000837189 245__ $$aSubfilamentary Networks Cause Cycle-to-Cycle Variability in Memristive Devices
000837189 260__ $$aWashington, DC$$bSoc.$$c2017
000837189 3367_ $$2DRIVER$$aarticle
000837189 3367_ $$2DataCite$$aOutput Types/Journal article
000837189 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1503996672_10814
000837189 3367_ $$2BibTeX$$aARTICLE
000837189 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837189 3367_ $$00$$2EndNote$$aJournal Article
000837189 520__ $$aA major obstacle for the implementation of redox-based memristive memory or logic technology is the large cycle-to-cycle and device-to-device variability. Here, we use spectromicroscopic photoemission threshold analysis and operando XAS analysis to experimentally investigate the microscopic origin of the variability. We find that some devices exhibit variations in the shape of the conductive filament or in the oxygen vacancy distribution at and around the filament. In other cases, even the location of the active filament changes from one cycle to the next. We propose that both effects originate from the coexistence of multiple (sub)filaments and that the active, current-carrying filament may change from cycle to cycle. These findings account for the observed variability in device performance and represent the scientific basis, rather than prior purely empirical engineering approaches, for developing stable memristive devices.
000837189 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000837189 588__ $$aDataset connected to CrossRef
000837189 7001_ $$0P:(DE-Juel1)166474$$aValenta, Richard$$b1
000837189 7001_ $$0P:(DE-Juel1)159492$$aSchmitz, Christoph$$b2
000837189 7001_ $$0P:(DE-HGF)0$$aLocatelli, Andrea$$b3
000837189 7001_ $$0P:(DE-HGF)0$$aMenteş, Tevfik Onur$$b4
000837189 7001_ $$00000-0003-1554-4142$$aRogers, Steven P.$$b5
000837189 7001_ $$0P:(DE-HGF)0$$aSala, Alessandro$$b6
000837189 7001_ $$0P:(DE-Juel1)157925$$aRaab, Nicolas$$b7
000837189 7001_ $$0P:(DE-Juel1)164137$$aNemsak, Slavomir$$b8
000837189 7001_ $$00000-0001-7781-1029$$aShim, Moonsub$$b9
000837189 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus M.$$b10
000837189 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b11
000837189 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b12
000837189 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b13
000837189 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.7b02113$$gVol. 11, no. 7, p. 6921 - 6929$$n7$$p6921 - 6929$$tACS nano$$v11$$x1936-086X$$y2017
000837189 8564_ $$uhttps://juser.fz-juelich.de/record/837189/files/acsnano.7b02113.pdf$$yRestricted
000837189 8564_ $$uhttps://juser.fz-juelich.de/record/837189/files/acsnano.7b02113.gif?subformat=icon$$xicon$$yRestricted
000837189 8564_ $$uhttps://juser.fz-juelich.de/record/837189/files/acsnano.7b02113.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837189 8564_ $$uhttps://juser.fz-juelich.de/record/837189/files/acsnano.7b02113.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837189 8564_ $$uhttps://juser.fz-juelich.de/record/837189/files/acsnano.7b02113.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837189 8564_ $$uhttps://juser.fz-juelich.de/record/837189/files/acsnano.7b02113.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837189 909CO $$ooai:juser.fz-juelich.de:837189$$pVDB
000837189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b0$$kFZJ
000837189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166474$$aForschungszentrum Jülich$$b1$$kFZJ
000837189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159492$$aForschungszentrum Jülich$$b2$$kFZJ
000837189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157925$$aForschungszentrum Jülich$$b7$$kFZJ
000837189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164137$$aForschungszentrum Jülich$$b8$$kFZJ
000837189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b10$$kFZJ
000837189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b11$$kFZJ
000837189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b12$$kFZJ
000837189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b13$$kFZJ
000837189 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000837189 9141_ $$y2017
000837189 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2015
000837189 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837189 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837189 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837189 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837189 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837189 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837189 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837189 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837189 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS NANO : 2015
000837189 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000837189 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1
000837189 980__ $$ajournal
000837189 980__ $$aVDB
000837189 980__ $$aI:(DE-Juel1)PGI-7-20110106
000837189 980__ $$aI:(DE-Juel1)PGI-6-20110106
000837189 980__ $$aUNRESTRICTED