001     837189
005     20210129231221.0
024 7 _ |a 10.1021/acsnano.7b02113
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a WOS:000406649700040
|2 WOS
037 _ _ |a FZJ-2017-06168
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Baeumer, Christoph
|0 P:(DE-Juel1)159254
|b 0
|e Corresponding author
245 _ _ |a Subfilamentary Networks Cause Cycle-to-Cycle Variability in Memristive Devices
260 _ _ |a Washington, DC
|c 2017
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1503996672_10814
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A major obstacle for the implementation of redox-based memristive memory or logic technology is the large cycle-to-cycle and device-to-device variability. Here, we use spectromicroscopic photoemission threshold analysis and operando XAS analysis to experimentally investigate the microscopic origin of the variability. We find that some devices exhibit variations in the shape of the conductive filament or in the oxygen vacancy distribution at and around the filament. In other cases, even the location of the active filament changes from one cycle to the next. We propose that both effects originate from the coexistence of multiple (sub)filaments and that the active, current-carrying filament may change from cycle to cycle. These findings account for the observed variability in device performance and represent the scientific basis, rather than prior purely empirical engineering approaches, for developing stable memristive devices.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Valenta, Richard
|0 P:(DE-Juel1)166474
|b 1
700 1 _ |a Schmitz, Christoph
|0 P:(DE-Juel1)159492
|b 2
700 1 _ |a Locatelli, Andrea
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Menteş, Tevfik Onur
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Rogers, Steven P.
|0 0000-0003-1554-4142
|b 5
700 1 _ |a Sala, Alessandro
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Raab, Nicolas
|0 P:(DE-Juel1)157925
|b 7
700 1 _ |a Nemsak, Slavomir
|0 P:(DE-Juel1)164137
|b 8
700 1 _ |a Shim, Moonsub
|0 0000-0001-7781-1029
|b 9
700 1 _ |a Schneider, Claus M.
|0 P:(DE-Juel1)130948
|b 10
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 11
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 12
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 13
773 _ _ |a 10.1021/acsnano.7b02113
|g Vol. 11, no. 7, p. 6921 - 6929
|0 PERI:(DE-600)2383064-5
|n 7
|p 6921 - 6929
|t ACS nano
|v 11
|y 2017
|x 1936-086X
856 4 _ |u https://juser.fz-juelich.de/record/837189/files/acsnano.7b02113.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837189/files/acsnano.7b02113.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837189/files/acsnano.7b02113.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837189/files/acsnano.7b02113.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837189/files/acsnano.7b02113.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837189/files/acsnano.7b02113.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837189
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159254
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166474
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159492
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)157925
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)164137
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130948
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)158062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS NANO : 2015
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21