000837639 001__ 837639
000837639 005__ 20240712112812.0
000837639 0247_ $$2doi$$a10.3390/ma10091072
000837639 0247_ $$2Handle$$a2128/15279
000837639 0247_ $$2WOS$$aWOS:000411506700082
000837639 0247_ $$2altmetric$$aaltmetric:26038428
000837639 0247_ $$2pmid$$apmid:28895931
000837639 037__ $$aFZJ-2017-06517
000837639 082__ $$a600
000837639 1001_ $$0P:(DE-HGF)0$$avan den Ham, Evert$$b0
000837639 245__ $$aWet-Chemical Synthesis of 3D Stacked Thin Film Metal-Oxides for All-Solid-State Li-Ion Batteries
000837639 260__ $$aBasel$$bMDPI$$c2017
000837639 3367_ $$2DRIVER$$aarticle
000837639 3367_ $$2DataCite$$aOutput Types/Journal article
000837639 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505453145_21922
000837639 3367_ $$2BibTeX$$aARTICLE
000837639 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837639 3367_ $$00$$2EndNote$$aJournal Article
000837639 520__ $$aBy ultrasonic spray deposition of precursors, conformal deposition on 3D surfaces of tungsten oxide (WO3) negative electrode and amorphous lithium lanthanum titanium oxide (LLT) solid-electrolyte has been achieved as well as an all-solid-state half-cell. Electrochemical activity was achieved of the WO3 layers, annealed at temperatures of 500 °C. Galvanostatic measurements show a volumetric capacity (415 mAh·cm−3) of the deposited electrode material. In addition, electrochemical activity was shown for half-cells, created by coating WO3 with LLT as the solid-state electrolyte. The electron blocking properties of the LLT solid-electrolyte was shown by ferrocene reduction. 3D depositions were done on various micro-sized Si template structures, showing fully covering coatings of both WO3 and LLT. Finally, the thermal budget required for WO3 layer deposition was minimized, which enabled attaining active WO3 on 3D TiN/Si micro-cylinders. A 2.6-fold capacity increase for the 3D-structured WO3 was shown, with the same current density per coated area.
000837639 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000837639 588__ $$aDataset connected to CrossRef
000837639 7001_ $$0P:(DE-HGF)0$$aMaino, Giulia$$b1
000837639 7001_ $$0P:(DE-HGF)0$$aBonneux, Gilles$$b2
000837639 7001_ $$0P:(DE-HGF)0$$aMarchal, Wouter$$b3
000837639 7001_ $$0P:(DE-HGF)0$$aElen, Ken$$b4
000837639 7001_ $$0P:(DE-HGF)0$$aGielis, Sven$$b5
000837639 7001_ $$00000-0001-6275-6805$$aMattelaer, Felix$$b6
000837639 7001_ $$0P:(DE-HGF)0$$aDetavernier, Christophe$$b7
000837639 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b8$$ufzj
000837639 7001_ $$0P:(DE-HGF)0$$aVan Bael, Marlies$$b9
000837639 7001_ $$0P:(DE-HGF)0$$aHardy, An$$b10$$eCorresponding author
000837639 773__ $$0PERI:(DE-600)2487261-1$$a10.3390/ma10091072$$gVol. 10, no. 9, p. 1072 -$$n9$$p1072 -$$tMaterials$$v10$$x1996-1944$$y2017
000837639 8564_ $$uhttps://juser.fz-juelich.de/record/837639/files/materials-10-01072.pdf$$yOpenAccess
000837639 8564_ $$uhttps://juser.fz-juelich.de/record/837639/files/materials-10-01072.gif?subformat=icon$$xicon$$yOpenAccess
000837639 8564_ $$uhttps://juser.fz-juelich.de/record/837639/files/materials-10-01072.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837639 8564_ $$uhttps://juser.fz-juelich.de/record/837639/files/materials-10-01072.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837639 8564_ $$uhttps://juser.fz-juelich.de/record/837639/files/materials-10-01072.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837639 8564_ $$uhttps://juser.fz-juelich.de/record/837639/files/materials-10-01072.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837639 909CO $$ooai:juser.fz-juelich.de:837639$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000837639 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837639 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000837639 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000837639 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837639 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATERIALS : 2015
000837639 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000837639 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000837639 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837639 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837639 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837639 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837639 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837639 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837639 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837639 9141_ $$y2017
000837639 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUni Hasselt$$b0
000837639 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUni Hasselt$$b2
000837639 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUni Hasselt$$b3
000837639 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUni Hasselt$$b4
000837639 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUni Hasselt$$b5
000837639 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aGhent University$$b7
000837639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b8$$kFZJ
000837639 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUni Eindhoven$$b8
000837639 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aHasselt University$$b9
000837639 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUni Hasselt$$b10
000837639 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000837639 920__ $$lyes
000837639 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000837639 9801_ $$aFullTexts
000837639 980__ $$ajournal
000837639 980__ $$aVDB
000837639 980__ $$aUNRESTRICTED
000837639 980__ $$aI:(DE-Juel1)IEK-9-20110218
000837639 981__ $$aI:(DE-Juel1)IET-1-20110218