Journal Article FZJ-2017-06517

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Wet-Chemical Synthesis of 3D Stacked Thin Film Metal-Oxides for All-Solid-State Li-Ion Batteries

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2017
MDPI Basel

Materials 10(9), 1072 - () [10.3390/ma10091072]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: By ultrasonic spray deposition of precursors, conformal deposition on 3D surfaces of tungsten oxide (WO3) negative electrode and amorphous lithium lanthanum titanium oxide (LLT) solid-electrolyte has been achieved as well as an all-solid-state half-cell. Electrochemical activity was achieved of the WO3 layers, annealed at temperatures of 500 °C. Galvanostatic measurements show a volumetric capacity (415 mAh·cm−3) of the deposited electrode material. In addition, electrochemical activity was shown for half-cells, created by coating WO3 with LLT as the solid-state electrolyte. The electron blocking properties of the LLT solid-electrolyte was shown by ferrocene reduction. 3D depositions were done on various micro-sized Si template structures, showing fully covering coatings of both WO3 and LLT. Finally, the thermal budget required for WO3 layer deposition was minimized, which enabled attaining active WO3 on 3D TiN/Si micro-cylinders. A 2.6-fold capacity increase for the 3D-structured WO3 was shown, with the same current density per coated area.

Classification:

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IEK-9)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2017
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Current Contents - Engineering, Computing and Technology ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-1
Workflow collections > Public records
IEK > IEK-9
Publications database
Open Access

 Record created 2017-09-13, last modified 2024-07-12