001     837639
005     20240712112812.0
024 7 _ |a 10.3390/ma10091072
|2 doi
024 7 _ |a 2128/15279
|2 Handle
024 7 _ |a WOS:000411506700082
|2 WOS
024 7 _ |a altmetric:26038428
|2 altmetric
024 7 _ |a pmid:28895931
|2 pmid
037 _ _ |a FZJ-2017-06517
082 _ _ |a 600
100 1 _ |0 P:(DE-HGF)0
|a van den Ham, Evert
|b 0
245 _ _ |a Wet-Chemical Synthesis of 3D Stacked Thin Film Metal-Oxides for All-Solid-State Li-Ion Batteries
260 _ _ |a Basel
|b MDPI
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1505453145_21922
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a By ultrasonic spray deposition of precursors, conformal deposition on 3D surfaces of tungsten oxide (WO3) negative electrode and amorphous lithium lanthanum titanium oxide (LLT) solid-electrolyte has been achieved as well as an all-solid-state half-cell. Electrochemical activity was achieved of the WO3 layers, annealed at temperatures of 500 °C. Galvanostatic measurements show a volumetric capacity (415 mAh·cm−3) of the deposited electrode material. In addition, electrochemical activity was shown for half-cells, created by coating WO3 with LLT as the solid-state electrolyte. The electron blocking properties of the LLT solid-electrolyte was shown by ferrocene reduction. 3D depositions were done on various micro-sized Si template structures, showing fully covering coatings of both WO3 and LLT. Finally, the thermal budget required for WO3 layer deposition was minimized, which enabled attaining active WO3 on 3D TiN/Si micro-cylinders. A 2.6-fold capacity increase for the 3D-structured WO3 was shown, with the same current density per coated area.
536 _ _ |0 G:(DE-HGF)POF3-131
|a 131 - Electrochemical Storage (POF3-131)
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Maino, Giulia
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Bonneux, Gilles
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Marchal, Wouter
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Elen, Ken
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Gielis, Sven
|b 5
700 1 _ |0 0000-0001-6275-6805
|a Mattelaer, Felix
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Detavernier, Christophe
|b 7
700 1 _ |0 P:(DE-Juel1)165918
|a Notten, Peter H. L.
|b 8
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Van Bael, Marlies
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Hardy, An
|b 10
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2487261-1
|a 10.3390/ma10091072
|g Vol. 10, no. 9, p. 1072 -
|n 9
|p 1072 -
|t Materials
|v 10
|x 1996-1944
|y 2017
856 4 _ |u https://juser.fz-juelich.de/record/837639/files/materials-10-01072.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837639/files/materials-10-01072.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837639/files/materials-10-01072.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837639/files/materials-10-01072.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837639/files/materials-10-01072.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837639/files/materials-10-01072.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:837639
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Uni Hasselt
|b 0
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Uni Hasselt
|b 2
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Uni Hasselt
|b 3
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Uni Hasselt
|b 4
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Uni Hasselt
|b 5
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Ghent University
|b 7
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165918
|a Forschungszentrum Jülich
|b 8
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Uni Eindhoven
|b 8
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Hasselt University
|b 9
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Uni Hasselt
|b 10
913 1 _ |0 G:(DE-HGF)POF3-131
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b MATERIALS : 2015
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21