000837709 001__ 837709
000837709 005__ 20230426083152.0
000837709 0247_ $$2doi$$a10.1103/PhysRevB.96.035301
000837709 0247_ $$2ISSN$$a0163-1829
000837709 0247_ $$2ISSN$$a0556-2805
000837709 0247_ $$2ISSN$$a1094-1622
000837709 0247_ $$2ISSN$$a1095-3795
000837709 0247_ $$2ISSN$$a1098-0121
000837709 0247_ $$2ISSN$$a1550-235X
000837709 0247_ $$2ISSN$$a2469-9950
000837709 0247_ $$2ISSN$$a2469-9969
000837709 0247_ $$2Handle$$a2128/15288
000837709 0247_ $$2WOS$$aWOS:000405023400007
000837709 0247_ $$2altmetric$$aaltmetric:21777345
000837709 037__ $$aFZJ-2017-06569
000837709 082__ $$a530
000837709 1001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b0$$ufzj
000837709 245__ $$aChalcogenide-based van der Waals epitaxy: Interface conductivity of tellurium on Si(111)
000837709 260__ $$aWoodbury, NY$$bInst.$$c2017
000837709 3367_ $$2DRIVER$$aarticle
000837709 3367_ $$2DataCite$$aOutput Types/Journal article
000837709 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505459623_21918
000837709 3367_ $$2BibTeX$$aARTICLE
000837709 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837709 3367_ $$00$$2EndNote$$aJournal Article
000837709 520__ $$aWe present a combined experimental and theoretical analysis of a Te rich interface layer which represents a template for chalcogenide-based van der Waals epitaxy on Si(111). On a clean Si(111)-(1×1) surface, we find Te to form a Te/Si(111)-(1×1) reconstruction to saturate the substrate bonds. A problem arising is that such an interface layer can potentially be highly conductive, undermining the applicability of the on-top grown films in electric devices. We perform here a detailed structural analysis of the pristine Te termination and present direct measurements of its electrical conductivity by in situ distance-dependent four-probe measurements. The experimental results are analyzed with respect to density functional theory calculations and the implications of the interface termination with respect to the electrical conductivity of chalcogenide-based topological insulator thin films are discussed. In detail, we find a Te/Si(111)-(1×1) interface conductivity of σTe2D=2.6(5)×10−7S/□, which is small compared to the typical conductivity of topological surface states.
000837709 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000837709 542__ $$2Crossref$$i2017-07-05$$uhttp://link.aps.org/licenses/aps-default-license
000837709 588__ $$aDataset connected to CrossRef
000837709 7001_ $$0P:(DE-Juel1)162164$$aJust, Sven$$b1$$ufzj
000837709 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b2$$ufzj
000837709 7001_ $$0P:(DE-Juel1)156236$$aLanius, Martin$$b3$$ufzj
000837709 7001_ $$0P:(DE-Juel1)130811$$aLuysberg, Martina$$b4$$ufzj
000837709 7001_ $$0P:(DE-Juel1)168445$$aDoležal, Jiří$$b5
000837709 7001_ $$0P:(DE-Juel1)156529$$aNeumann, Elmar$$b6$$ufzj
000837709 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b7$$ufzj
000837709 7001_ $$0P:(DE-HGF)0$$aOšt'ádal, Ivan$$b8
000837709 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b9$$ufzj
000837709 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b10$$ufzj
000837709 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b11$$eCorresponding author$$ufzj
000837709 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.96.035301$$bAmerican Physical Society (APS)$$d2017-07-05$$n3$$p035301$$tPhysical Review B$$v96$$x2469-9950$$y2017
000837709 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.96.035301$$gVol. 96, no. 3, p. 035301$$n3$$p035301$$tPhysical review / B$$v96$$x2469-9950$$y2017
000837709 8564_ $$uhttps://juser.fz-juelich.de/record/837709/files/PhysRevB.96.035301.pdf$$yOpenAccess
000837709 8564_ $$uhttps://juser.fz-juelich.de/record/837709/files/PhysRevB.96.035301.gif?subformat=icon$$xicon$$yOpenAccess
000837709 8564_ $$uhttps://juser.fz-juelich.de/record/837709/files/PhysRevB.96.035301.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837709 8564_ $$uhttps://juser.fz-juelich.de/record/837709/files/PhysRevB.96.035301.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837709 8564_ $$uhttps://juser.fz-juelich.de/record/837709/files/PhysRevB.96.035301.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837709 8564_ $$uhttps://juser.fz-juelich.de/record/837709/files/PhysRevB.96.035301.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837709 909CO $$ooai:juser.fz-juelich.de:837709$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000837709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b0$$kFZJ
000837709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162164$$aForschungszentrum Jülich$$b1$$kFZJ
000837709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b2$$kFZJ
000837709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156236$$aForschungszentrum Jülich$$b3$$kFZJ
000837709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130811$$aForschungszentrum Jülich$$b4$$kFZJ
000837709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156529$$aForschungszentrum Jülich$$b6$$kFZJ
000837709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich$$b7$$kFZJ
000837709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b9$$kFZJ
000837709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b10$$kFZJ
000837709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich$$b11$$kFZJ
000837709 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000837709 9141_ $$y2017
000837709 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837709 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837709 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000837709 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015
000837709 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837709 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837709 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837709 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837709 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837709 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837709 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837709 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837709 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837709 920__ $$lyes
000837709 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000837709 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000837709 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x2
000837709 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x3
000837709 9201_ $$0I:(DE-Juel1)HNF-20170116$$kHNF$$lHelmholtz - Nanofacility$$x4
000837709 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x5
000837709 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x6
000837709 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x7
000837709 980__ $$ajournal
000837709 980__ $$aVDB
000837709 980__ $$aUNRESTRICTED
000837709 980__ $$aI:(DE-Juel1)PGI-3-20110106
000837709 980__ $$aI:(DE-Juel1)PGI-1-20110106
000837709 980__ $$aI:(DE-Juel1)PGI-9-20110106
000837709 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000837709 980__ $$aI:(DE-Juel1)HNF-20170116
000837709 980__ $$aI:(DE-Juel1)IAS-1-20090406
000837709 980__ $$aI:(DE-82)080009_20140620
000837709 980__ $$aI:(DE-82)080012_20140620
000837709 9801_ $$aFullTexts
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.146401
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2010.279
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.136805
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature08308
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1270
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl501489m
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.241306
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jcrysgro.2016.08.016
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms9816
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0040-6090(92)90872-9
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cg301236s
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4936079
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.075310
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.066801
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl803783g
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.016801
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms14976
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.353845
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.587490
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.105155
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.23.5048
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.24.864
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3694990
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/21/1/013003
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms11381
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms15704
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.035318
000837709 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tsf.2011.07.033