001     837824
005     20240610120726.0
024 7 _ |a 10.1016/j.bpj.2017.07.016
|2 doi
024 7 _ |a 0006-3495
|2 ISSN
024 7 _ |a 1542-0086
|2 ISSN
024 7 _ |a WOS:000410462300015
|2 WOS
024 7 _ |a altmetric:24829555
|2 altmetric
024 7 _ |a pmid:28877494
|2 pmid
037 _ _ |a FZJ-2017-06608
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Ravichandran, Arvind
|0 P:(DE-Juel1)164388
|b 0
245 _ _ |a Enhanced Dynamics of Confined Cytoskeletal Filaments Driven by Asymmetric Motors
260 _ _ |a Cambridge, Mass.
|c 2017
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521100791_16844
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cytoskeletal filaments and molecular motors facilitate the micron-scale force generation necessary for the distribution of organelles and the restructuring of the cytoskeleton within eukaryotic cells. Although the mesoscopic structure and the dynamics of such filaments have been studied in vitro and in vivo, their connection with filament polarity-dependent motor-mediated force generation is not well understood. Using 2D Brownian dynamics simulations, we study a dense, confined mixture of rigid microtubules (MTs) and active springs that have arms that cross-link neighboring MT pairs and move unidirectionally on the attached MT. We simulate depletion interactions between MTs using an attractive potential. We show that dimeric motors, with a motile arm on only one of the two MTs, produce large polarity-sorted MT clusters, whereas tetrameric motors, with motile arms on both microtubules, produce bundles. Furthermore, dimeric motors induce, on average, higher velocities between antialigned MTs than tetrameric motors. Our results, where MTs move faster near the confining wall, are consistent with experimental observations in Drosophila oocytes where enhanced microtubule activity is found close to the confining plasma membrane.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
536 _ _ |a Hydrodynamics of Active Biological Systems (jiff26_20110501)
|0 G:(DE-Juel1)jiff26_20110501
|c jiff26_20110501
|f Hydrodynamics of Active Biological Systems
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Saggiorato, Guglielmo
|0 P:(DE-Juel1)145642
|b 1
700 1 _ |a Auth, Thorsten
|0 P:(DE-Juel1)130514
|b 2
|e Corresponding author
700 1 _ |a Gompper, Gerhard
|0 P:(DE-Juel1)130665
|b 3
|e Corresponding author
700 1 _ |a Vliegenthart, Gerrit
|0 P:(DE-Juel1)131017
|b 4
773 _ _ |a 10.1016/j.bpj.2017.07.016
|g Vol. 113, no. 5, p. 1121 - 1132
|0 PERI:(DE-600)1477214-0
|n 5
|p 1121 - 1132
|t Biophysical journal
|v 113
|y 2017
|x 0006-3495
856 4 _ |u https://juser.fz-juelich.de/record/837824/files/1-s2.0-S000634951730841X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837824/files/1-s2.0-S000634951730841X-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837824/files/1-s2.0-S000634951730841X-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837824/files/1-s2.0-S000634951730841X-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837824/files/1-s2.0-S000634951730841X-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837824/files/1-s2.0-S000634951730841X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837824
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164388
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130514
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130665
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131017
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOPHYS J : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)ICS-2-20110106
|k ICS-2
|l Theorie der Weichen Materie und Biophysik
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-2-20090406
|k IAS-2
|l Theorie der Weichen Materie und Biophysik
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 1 _ |a APC
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-Juel1)IAS-2-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21