001     838094
005     20210129231506.0
024 7 _ |a 10.1038/s41467-017-00290-4
|2 doi
024 7 _ |a 2128/15425
|2 Handle
024 7 _ |a altmetric:21255513
|2 altmetric
024 7 _ |a pmid:28878205
|2 pmid
024 7 _ |a WOS:000409458000003
|2 WOS
037 _ _ |a FZJ-2017-100017
082 _ _ |a 500
100 1 _ |a Chen, X. Z.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Tunneling anisotropic magnetoresistance driven by magnetic phase transition
260 _ _ |a London
|c 2017
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1506685869_19831
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α′-FeRh-based junctions driven by the magnetic phase transition of α′-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α′-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α′-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Feng, J. F.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wang, Z. C.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhang, J.
|0 P:(DE-Juel1)172738
|b 3
700 1 _ |a Zhong, X. Y.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Song, C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Jin, L.
|0 P:(DE-Juel1)145711
|b 6
700 1 _ |a Zhang, B.
|0 P:(DE-Juel1)151345
|b 7
700 1 _ |a Li, F.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Jiang, M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Tan, Y. Z.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Zhou, X. J.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Shi, G. Y.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Zhou, X. F.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Han, X. D.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Mao, S. C.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Chen, Y. H.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Han, X. F.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Pan, F.
|0 P:(DE-HGF)0
|b 18
|e Corresponding author
773 _ _ |a 10.1038/s41467-017-00290-4
|g Vol. 8, no. 1, p. 449
|0 PERI:(DE-600)2553671-0
|n 1
|p 449
|t Nature Communications
|v 8
|y 2017
|x 2041-1723
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/838094/files/s41467-017-00290-4.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/838094/files/s41467-017-00290-4.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/838094/files/s41467-017-00290-4.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/838094/files/s41467-017-00290-4.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/838094/files/s41467-017-00290-4.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/838094/files/s41467-017-00290-4.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:838094
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172738
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145711
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2015
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21