000838130 001__ 838130
000838130 005__ 20240712100911.0
000838130 0247_ $$2doi$$a10.5194/acp-17-7055-2017
000838130 0247_ $$2ISSN$$a1680-7316
000838130 0247_ $$2ISSN$$a1680-7324
000838130 0247_ $$2Handle$$a2128/15456
000838130 0247_ $$2WOS$$aWOS:000403219000006
000838130 0247_ $$2altmetric$$aaltmetric:21059942
000838130 037__ $$aFZJ-2017-06834
000838130 082__ $$a550
000838130 1001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b0$$eCorresponding author$$ufzj
000838130 245__ $$aQuantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere
000838130 260__ $$aKatlenburg-Lindau$$bEGU$$c2017
000838130 3367_ $$2DRIVER$$aarticle
000838130 3367_ $$2DataCite$$aOutput Types/Journal article
000838130 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1507183207_26354
000838130 3367_ $$2BibTeX$$aARTICLE
000838130 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838130 3367_ $$00$$2EndNote$$aJournal Article
000838130 520__ $$aPollution transport from the surface to the stratosphere within the Asian monsoon circulation may cause harmful effects on stratospheric chemistry and climate. Here, we investigate air mass transport from the monsoon anticyclone into the stratosphere using a Lagrangian chemistry transport model. We show how two main transport pathways from the anticyclone emerge: (i) into the tropical stratosphere (tropical pipe), and (ii) into the Northern Hemisphere (NH) extratropical lower stratosphere. Maximum anticyclone air mass fractions reach around 5 % in the tropical pipe and 15 % in the extratropical lowermost stratosphere over the course of a year. The anticyclone air mass fraction correlates well with satellite hydrogen cyanide (HCN) and carbon monoxide (CO) observations, confirming that pollution is transported deep into the tropical stratosphere from the Asian monsoon anticyclone. Cross-tropopause transport occurs in a vertical chimney, but with the pollutants transported quasi-horizontally along isentropes above the tropopause into the tropics and NH.
000838130 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000838130 588__ $$aDataset connected to CrossRef
000838130 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b1$$ufzj
000838130 7001_ $$00000-0003-3420-9454$$aWalker, Kaley$$b2
000838130 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b3$$ufzj
000838130 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-17-7055-2017$$gVol. 17, no. 11, p. 7055 - 7066$$n11$$p7055 - 7066$$tAtmospheric chemistry and physics$$v17$$x1680-7324$$y2017
000838130 8564_ $$uhttps://juser.fz-juelich.de/record/838130/files/acp-17-7055-2017.pdf$$yOpenAccess
000838130 8564_ $$uhttps://juser.fz-juelich.de/record/838130/files/acp-17-7055-2017.gif?subformat=icon$$xicon$$yOpenAccess
000838130 8564_ $$uhttps://juser.fz-juelich.de/record/838130/files/acp-17-7055-2017.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838130 8564_ $$uhttps://juser.fz-juelich.de/record/838130/files/acp-17-7055-2017.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838130 8564_ $$uhttps://juser.fz-juelich.de/record/838130/files/acp-17-7055-2017.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838130 8564_ $$uhttps://juser.fz-juelich.de/record/838130/files/acp-17-7055-2017.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838130 909CO $$ooai:juser.fz-juelich.de:838130$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000838130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b0$$kFZJ
000838130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b1$$kFZJ
000838130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b3$$kFZJ
000838130 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000838130 9141_ $$y2017
000838130 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000838130 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838130 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838130 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015
000838130 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000838130 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000838130 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838130 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838130 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838130 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838130 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015
000838130 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838130 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838130 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838130 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000838130 9801_ $$aFullTexts
000838130 980__ $$ajournal
000838130 980__ $$aVDB
000838130 980__ $$aUNRESTRICTED
000838130 980__ $$aI:(DE-Juel1)IEK-7-20101013
000838130 981__ $$aI:(DE-Juel1)ICE-4-20101013