Poster (Other) FZJ-2017-06911

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Simulation of a Quantum Annealer Based on Superconducting Flux Qubits

 ;  ;  ;  ;

2017

Big ideas in quantum matter, NijmegenNijmegen, The Netherlands, 14 Sep 2017 - 15 Sep 20172017-09-142017-09-15

Please use a persistent id in citations:

Abstract: For quantum computers, there are two theoretical models which are nowadays considered to be the most important: the gate-based quantum computer and the quantum annealer.Gate-based quantum computers are based on computational gates just like classical computers are, but have potentially more computational power due to the algebra behind quantum theory. A quantum annealer works fundamentally different: First the system is prepared in a known ground state of an initial Hamiltonian, then this Hamiltonian is adiabatically transformed into the final Hamiltonian whose ground state corresponds to the solution of a given problem, usually taken from the class of optimization problems.Quantum annealing works well in theory if the qubits can be described by two-level systems. However, in real devices qubits are not based on a perfect two-level system, but on a two-dimensional subspace of a larger system. This makes approximations in analytic calculations unavoidable.With a simulation utilizing the Suzuki-Trotter product-formula approach for solving the time-dependent Schrödinger equation, the time-evolution of the full state of such a device based on superconducting flux qubits is investigated.


Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)

Appears in the scientific report 2017
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Presentations > Poster
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2017-10-09, last modified 2021-01-29


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)