000838297 001__ 838297
000838297 005__ 20240711101505.0
000838297 0247_ $$2doi$$a10.1016/j.ijhydene.2018.02.030
000838297 0247_ $$2ISSN$$a0360-3199
000838297 0247_ $$2ISSN$$a1879-3487
000838297 0247_ $$2WOS$$aWOS:000428823900026
000838297 0247_ $$2altmetric$$aaltmetric:34273664
000838297 037__ $$aFZJ-2017-06940
000838297 082__ $$a660
000838297 1001_ $$0P:(DE-Juel1)171308$$aTalpacci, Eleonora$$b0$$eCorresponding author
000838297 245__ $$aEffect of Cascade Storage System Topology on the Cooling Energy Consumption in Fueling Stations for Hydrogen Vehicles
000838297 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000838297 3367_ $$2DRIVER$$aarticle
000838297 3367_ $$2DataCite$$aOutput Types/Journal article
000838297 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521810619_31195
000838297 3367_ $$2BibTeX$$aARTICLE
000838297 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838297 3367_ $$00$$2EndNote$$aJournal Article
000838297 520__ $$aOne of the main obstacles of the diffusion of fuel cell electric vehicles (FCEV) is the refueling system. The new stations follow the refueling protocol from the Society of Automotive Engineers where the way to reach the target pressure is not explained. This work analyzes the thermodynamics of a hydrogen fueling station in order to study the effects of the cascade storage system topology on the energy consumption for the cooling facility. It is found that the energy consumption for cooling increases, expanding the total volume of the cascade storage system. Comparing the optimal and the worst volume configurations of the cascade storage tanks at different ambient temperatures, the energy saving is approximately 12% when the average ambient temperature is 20 °C and around 20% when the average ambient temperature is 30 °C. The energy consumption for cooling is significantly influenced by the topology of the cascade storage system and it is particularly relevant in the case of low daily-dispensed amount of hydrogen.
000838297 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000838297 588__ $$aDataset connected to CrossRef
000838297 7001_ $$0P:(DE-Juel1)168335$$aReuss, Markus$$b1
000838297 7001_ $$0P:(DE-Juel1)129852$$aGrube, Thomas$$b2
000838297 7001_ $$0P:(DE-HGF)0$$aCilibrizzi, Pasquale$$b3
000838297 7001_ $$0P:(DE-HGF)0$$aGunnella, Roberto$$b4
000838297 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b5
000838297 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b6
000838297 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2018.02.030$$gVol. 43, no. 12, p. 6256 - 6265$$n12$$p6256 - 6265$$tInternational journal of hydrogen energy$$v43$$x0360-3199$$y2017
000838297 8564_ $$uhttps://juser.fz-juelich.de/record/838297/files/1-s2.0-S0360319918304087-main.pdf$$yRestricted
000838297 8564_ $$uhttps://juser.fz-juelich.de/record/838297/files/1-s2.0-S0360319918304087-main.gif?subformat=icon$$xicon$$yRestricted
000838297 8564_ $$uhttps://juser.fz-juelich.de/record/838297/files/1-s2.0-S0360319918304087-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000838297 8564_ $$uhttps://juser.fz-juelich.de/record/838297/files/1-s2.0-S0360319918304087-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000838297 8564_ $$uhttps://juser.fz-juelich.de/record/838297/files/1-s2.0-S0360319918304087-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000838297 8564_ $$uhttps://juser.fz-juelich.de/record/838297/files/1-s2.0-S0360319918304087-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000838297 909CO $$ooai:juser.fz-juelich.de:838297$$pVDB
000838297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171308$$aForschungszentrum Jülich$$b0$$kFZJ
000838297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168335$$aForschungszentrum Jülich$$b1$$kFZJ
000838297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b2$$kFZJ
000838297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b5$$kFZJ
000838297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b6$$kFZJ
000838297 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000838297 9141_ $$y2018
000838297 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000838297 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838297 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838297 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838297 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000838297 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000838297 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838297 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838297 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838297 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838297 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000838297 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000838297 920__ $$lyes
000838297 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000838297 980__ $$ajournal
000838297 980__ $$aVDB
000838297 980__ $$aI:(DE-Juel1)IEK-3-20101013
000838297 980__ $$aUNRESTRICTED
000838297 981__ $$aI:(DE-Juel1)ICE-2-20101013