Journal Article FZJ-2017-06940

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Effect of Cascade Storage System Topology on the Cooling Energy Consumption in Fueling Stations for Hydrogen Vehicles

 ;  ;  ;  ;  ;  ;

2017
Elsevier New York, NY [u.a.]

International journal of hydrogen energy 43(12), 6256 - 6265 () [10.1016/j.ijhydene.2018.02.030]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: One of the main obstacles of the diffusion of fuel cell electric vehicles (FCEV) is the refueling system. The new stations follow the refueling protocol from the Society of Automotive Engineers where the way to reach the target pressure is not explained. This work analyzes the thermodynamics of a hydrogen fueling station in order to study the effects of the cascade storage system topology on the energy consumption for the cooling facility. It is found that the energy consumption for cooling increases, expanding the total volume of the cascade storage system. Comparing the optimal and the worst volume configurations of the cascade storage tanks at different ambient temperatures, the energy saving is approximately 12% when the average ambient temperature is 20 °C and around 20% when the average ambient temperature is 30 °C. The energy consumption for cooling is significantly influenced by the topology of the cascade storage system and it is particularly relevant in the case of low daily-dispensed amount of hydrogen.

Classification:

Contributing Institute(s):
  1. Elektrochemische Verfahrenstechnik (IEK-3)
Research Program(s):
  1. 134 - Electrolysis and Hydrogen (POF3-134) (POF3-134)

Appears in the scientific report 2018
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-2
Workflow collections > Public records
IEK > IEK-3
Publications database

 Record created 2017-10-10, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)