001     838297
005     20240711101505.0
024 7 _ |a 10.1016/j.ijhydene.2018.02.030
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000428823900026
|2 WOS
024 7 _ |a altmetric:34273664
|2 altmetric
037 _ _ |a FZJ-2017-06940
082 _ _ |a 660
100 1 _ |a Talpacci, Eleonora
|0 P:(DE-Juel1)171308
|b 0
|e Corresponding author
245 _ _ |a Effect of Cascade Storage System Topology on the Cooling Energy Consumption in Fueling Stations for Hydrogen Vehicles
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521810619_31195
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a One of the main obstacles of the diffusion of fuel cell electric vehicles (FCEV) is the refueling system. The new stations follow the refueling protocol from the Society of Automotive Engineers where the way to reach the target pressure is not explained. This work analyzes the thermodynamics of a hydrogen fueling station in order to study the effects of the cascade storage system topology on the energy consumption for the cooling facility. It is found that the energy consumption for cooling increases, expanding the total volume of the cascade storage system. Comparing the optimal and the worst volume configurations of the cascade storage tanks at different ambient temperatures, the energy saving is approximately 12% when the average ambient temperature is 20 °C and around 20% when the average ambient temperature is 30 °C. The energy consumption for cooling is significantly influenced by the topology of the cascade storage system and it is particularly relevant in the case of low daily-dispensed amount of hydrogen.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Reuss, Markus
|0 P:(DE-Juel1)168335
|b 1
700 1 _ |a Grube, Thomas
|0 P:(DE-Juel1)129852
|b 2
700 1 _ |a Cilibrizzi, Pasquale
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gunnella, Roberto
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 5
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 6
773 _ _ |a 10.1016/j.ijhydene.2018.02.030
|g Vol. 43, no. 12, p. 6256 - 6265
|0 PERI:(DE-600)1484487-4
|n 12
|p 6256 - 6265
|t International journal of hydrogen energy
|v 43
|y 2017
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/838297/files/1-s2.0-S0360319918304087-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838297/files/1-s2.0-S0360319918304087-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838297/files/1-s2.0-S0360319918304087-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838297/files/1-s2.0-S0360319918304087-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838297/files/1-s2.0-S0360319918304087-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/838297/files/1-s2.0-S0360319918304087-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:838297
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171308
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168335
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129852
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21