000838397 001__ 838397
000838397 005__ 20240610120816.0
000838397 0247_ $$2doi$$a10.1103/PhysRevMaterials.1.054001
000838397 0247_ $$2Handle$$a2128/15716
000838397 0247_ $$2WOS$$aWOS:000416584100001
000838397 0247_ $$2altmetric$$aaltmetric:20714750
000838397 037__ $$aFZJ-2017-07009
000838397 082__ $$a530
000838397 1001_ $$0P:(DE-Juel1)164287$$aBorghardt, Sven$$b0$$eCorresponding author
000838397 245__ $$aEngineering of optical and electronic band gaps in transition metal dichalcogenide monolayers through external dielectric screening
000838397 260__ $$aCollege Park, MD$$bAPS$$c2017
000838397 3367_ $$2DRIVER$$aarticle
000838397 3367_ $$2DataCite$$aOutput Types/Journal article
000838397 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1509092220_17595
000838397 3367_ $$2BibTeX$$aARTICLE
000838397 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838397 3367_ $$00$$2EndNote$$aJournal Article
000838397 520__ $$aHeterojunctions are the backbone of established semiconductor technology. The highly desirable reliablecreation of dielectrically defined heterojunctions in transition metal dichalcogenide monolayers (TMD-MLs)requires an in-depth understanding of dielectric screening effects induced by the ML’s environment. Here wereport on the modulations of excitonic transitions in TMD-MLs through the effect of dielectric environmentsincluding low-k and high-k dielectric materials. We present absolute tuning ranges as large as 37 meV for theoptical band gaps of WSe2 andMoSe2 MLs and relative tuning ranges on the order of 15% for the binding energiesof charged excitons. Additionally, wemeasure relative changes of 30% in the energy splittings of exciton Rydbergstates of WSe2. The findings enable us to estimate changes in the exciton binding energies and the electronicband gaps of the studied materials.
000838397 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000838397 588__ $$aDataset connected to CrossRef
000838397 7001_ $$0P:(DE-Juel1)167206$$aTu, Jhih-Sian$$b1
000838397 7001_ $$0P:(DE-Juel1)161387$$aWinkler, Florian$$b2
000838397 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b3
000838397 7001_ $$0P:(DE-Juel1)128648$$aZander, Willi$$b4
000838397 7001_ $$0P:(DE-HGF)0$$aLeosson, Kristjan$$b5
000838397 7001_ $$0P:(DE-Juel1)145316$$aKardynal, Beata$$b6
000838397 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.1.054001$$gVol. 1, no. 5, p. 054001$$n5$$p054001$$tPhysical review materials$$v1$$x2475-9953$$y2017
000838397 8564_ $$uhttps://juser.fz-juelich.de/record/838397/files/Svenborghardt.pdf$$yOpenAccess
000838397 8564_ $$uhttps://juser.fz-juelich.de/record/838397/files/Svenborghardt.gif?subformat=icon$$xicon$$yOpenAccess
000838397 8564_ $$uhttps://juser.fz-juelich.de/record/838397/files/Svenborghardt.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838397 8564_ $$uhttps://juser.fz-juelich.de/record/838397/files/Svenborghardt.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838397 8564_ $$uhttps://juser.fz-juelich.de/record/838397/files/Svenborghardt.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838397 8564_ $$uhttps://juser.fz-juelich.de/record/838397/files/Svenborghardt.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838397 909CO $$ooai:juser.fz-juelich.de:838397$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000838397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164287$$aForschungszentrum Jülich$$b0$$kFZJ
000838397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167206$$aForschungszentrum Jülich$$b1$$kFZJ
000838397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161387$$aForschungszentrum Jülich$$b2$$kFZJ
000838397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich$$b3$$kFZJ
000838397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128648$$aForschungszentrum Jülich$$b4$$kFZJ
000838397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich$$b6$$kFZJ
000838397 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000838397 9141_ $$y2017
000838397 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000838397 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838397 920__ $$lyes
000838397 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000838397 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000838397 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x2
000838397 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x3
000838397 9801_ $$aFullTexts
000838397 980__ $$ajournal
000838397 980__ $$aVDB
000838397 980__ $$aUNRESTRICTED
000838397 980__ $$aI:(DE-Juel1)PGI-9-20110106
000838397 980__ $$aI:(DE-82)080009_20140620
000838397 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000838397 980__ $$aI:(DE-Juel1)PGI-5-20110106
000838397 981__ $$aI:(DE-Juel1)ER-C-1-20170209