001     838397
005     20240610120816.0
024 7 _ |a 10.1103/PhysRevMaterials.1.054001
|2 doi
024 7 _ |a 2128/15716
|2 Handle
024 7 _ |a WOS:000416584100001
|2 WOS
024 7 _ |a altmetric:20714750
|2 altmetric
037 _ _ |a FZJ-2017-07009
082 _ _ |a 530
100 1 _ |a Borghardt, Sven
|0 P:(DE-Juel1)164287
|b 0
|e Corresponding author
245 _ _ |a Engineering of optical and electronic band gaps in transition metal dichalcogenide monolayers through external dielectric screening
260 _ _ |a College Park, MD
|c 2017
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1509092220_17595
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Heterojunctions are the backbone of established semiconductor technology. The highly desirable reliablecreation of dielectrically defined heterojunctions in transition metal dichalcogenide monolayers (TMD-MLs)requires an in-depth understanding of dielectric screening effects induced by the ML’s environment. Here wereport on the modulations of excitonic transitions in TMD-MLs through the effect of dielectric environmentsincluding low-k and high-k dielectric materials. We present absolute tuning ranges as large as 37 meV for theoptical band gaps of WSe2 andMoSe2 MLs and relative tuning ranges on the order of 15% for the binding energiesof charged excitons. Additionally, wemeasure relative changes of 30% in the energy splittings of exciton Rydbergstates of WSe2. The findings enable us to estimate changes in the exciton binding energies and the electronicband gaps of the studied materials.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Tu, Jhih-Sian
|0 P:(DE-Juel1)167206
|b 1
700 1 _ |a Winkler, Florian
|0 P:(DE-Juel1)161387
|b 2
700 1 _ |a Schubert, Jürgen
|0 P:(DE-Juel1)128631
|b 3
700 1 _ |a Zander, Willi
|0 P:(DE-Juel1)128648
|b 4
700 1 _ |a Leosson, Kristjan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kardynal, Beata
|0 P:(DE-Juel1)145316
|b 6
773 _ _ |a 10.1103/PhysRevMaterials.1.054001
|g Vol. 1, no. 5, p. 054001
|0 PERI:(DE-600)2898355-5
|n 5
|p 054001
|t Physical review materials
|v 1
|y 2017
|x 2475-9953
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/838397/files/Svenborghardt.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/838397/files/Svenborghardt.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/838397/files/Svenborghardt.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/838397/files/Svenborghardt.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/838397/files/Svenborghardt.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/838397/files/Svenborghardt.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:838397
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164287
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167206
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161387
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128648
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145316
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21