000838637 001__ 838637
000838637 005__ 20240712100850.0
000838637 0247_ $$2doi$$a10.5194/acp-17-12219-2017
000838637 0247_ $$2ISSN$$a1680-7316
000838637 0247_ $$2ISSN$$a1680-7324
000838637 0247_ $$2Handle$$a2128/15697
000838637 0247_ $$2WOS$$aWOS:000412937900002
000838637 0247_ $$2altmetric$$aaltmetric:27385951
000838637 037__ $$aFZJ-2017-07210
000838637 082__ $$a550
000838637 1001_ $$0P:(DE-Juel1)156523$$aCosta, Anja$$b0$$eCorresponding author
000838637 245__ $$aClassification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime
000838637 260__ $$aKatlenburg-Lindau$$bEGU$$c2017
000838637 3367_ $$2DRIVER$$aarticle
000838637 3367_ $$2DataCite$$aOutput Types/Journal article
000838637 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515491096_19488
000838637 3367_ $$2BibTeX$$aARTICLE
000838637 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000838637 3367_ $$00$$2EndNote$$aJournal Article
000838637 520__ $$aThe degree of glaciation of mixed-phase clouds constitutes one of the largest uncertainties in climate prediction. In order to better understand cloud glaciation, cloud spectrometer observations are presented in this paper, which were made in the mixed-phase temperature regime between 0 and −38 °C (273 to 235 K), where cloud particles can either be frozen or liquid. The extensive data set covers four airborne field campaigns providing a total of 139 000 1 Hz data points (38.6 h within clouds) over Arctic, midlatitude and tropical regions. We develop algorithms, combining the information on number concentration, size and asphericity of the observed cloud particles to classify four cloud types: liquid clouds, clouds in which liquid droplets and ice crystals coexist, fully glaciated clouds after the Wegener–Bergeron–Findeisen process and clouds where secondary ice formation occurred. We quantify the occurrence of these cloud groups depending on the geographical region and temperature and find that liquid clouds dominate our measurements during the Arctic spring, while clouds dominated by the Wegener–Bergeron–Findeisen process are most common in midlatitude spring. The coexistence of liquid water and ice crystals is found over the whole mixed-phase temperature range in tropical convective towers in the dry season. Secondary ice is found at midlatitudes at −5 to −10 °C (268 to 263 K) and at higher altitudes, i.e. lower temperatures in the tropics. The distribution of the cloud types with decreasing temperature is shown to be consistent with the theory of evolution of mixed-phase clouds. With this study, we aim to contribute to a large statistical database on cloud types in the mixed-phase temperature regime.
000838637 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000838637 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000838637 588__ $$aDataset connected to CrossRef
000838637 7001_ $$0P:(DE-Juel1)129137$$aMeyer, Jessica$$b1
000838637 7001_ $$0P:(DE-Juel1)129108$$aAfchine, Armin$$b2$$ufzj
000838637 7001_ $$0P:(DE-Juel1)161554$$aLuebke, Anna$$b3
000838637 7001_ $$0P:(DE-Juel1)129123$$aGünther, Gebhard$$b4$$ufzj
000838637 7001_ $$0P:(DE-HGF)0$$aDorsey, James R.$$b5
000838637 7001_ $$00000-0002-4968-6088$$aGallagher, Martin W.$$b6
000838637 7001_ $$0P:(DE-HGF)0$$aEhrlich, Andre$$b7
000838637 7001_ $$00000-0002-4652-5561$$aWendisch, Manfred$$b8
000838637 7001_ $$00000-0002-3296-3085$$aBaumgardner, Darrel$$b9
000838637 7001_ $$00000-0003-2129-9323$$aWex, Heike$$b10
000838637 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b11
000838637 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-17-12219-2017$$gVol. 17, no. 19, p. 12219 - 12238$$n19$$p12219 - 12238$$tAtmospheric chemistry and physics$$v17$$x1680-7324$$y2017
000838637 8564_ $$uhttps://juser.fz-juelich.de/record/838637/files/invoice_Helmholtz-PUC-2018-6.pdf
000838637 8564_ $$uhttps://juser.fz-juelich.de/record/838637/files/acp-17-12219-2017.pdf$$yOpenAccess
000838637 8564_ $$uhttps://juser.fz-juelich.de/record/838637/files/acp-17-12219-2017.gif?subformat=icon$$xicon$$yOpenAccess
000838637 8564_ $$uhttps://juser.fz-juelich.de/record/838637/files/acp-17-12219-2017.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000838637 8564_ $$uhttps://juser.fz-juelich.de/record/838637/files/acp-17-12219-2017.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000838637 8564_ $$uhttps://juser.fz-juelich.de/record/838637/files/acp-17-12219-2017.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000838637 8564_ $$uhttps://juser.fz-juelich.de/record/838637/files/acp-17-12219-2017.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000838637 8564_ $$uhttps://juser.fz-juelich.de/record/838637/files/invoice_Helmholtz-PUC-2018-6.gif?subformat=icon$$xicon
000838637 8564_ $$uhttps://juser.fz-juelich.de/record/838637/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-1440$$xicon-1440
000838637 8564_ $$uhttps://juser.fz-juelich.de/record/838637/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-180$$xicon-180
000838637 8564_ $$uhttps://juser.fz-juelich.de/record/838637/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-640$$xicon-640
000838637 8564_ $$uhttps://juser.fz-juelich.de/record/838637/files/invoice_Helmholtz-PUC-2018-6.pdf?subformat=pdfa$$xpdfa
000838637 8767_ $$8Helmholtz-PUC-2018-6$$92018-01-03$$d2018-01-08$$eAPC$$jZahlung erfolgt$$pacp-2017-226
000838637 909CO $$ooai:juser.fz-juelich.de:838637$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000838637 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156523$$aForschungszentrum Jülich$$b0$$kFZJ
000838637 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129108$$aForschungszentrum Jülich$$b2$$kFZJ
000838637 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich$$b4$$kFZJ
000838637 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b11$$kFZJ
000838637 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000838637 9141_ $$y2017
000838637 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000838637 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000838637 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000838637 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015
000838637 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000838637 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000838637 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000838637 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000838637 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000838637 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000838637 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015
000838637 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000838637 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000838637 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000838637 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000838637 9801_ $$aAPC
000838637 9801_ $$aFullTexts
000838637 980__ $$ajournal
000838637 980__ $$aVDB
000838637 980__ $$aI:(DE-Juel1)IEK-7-20101013
000838637 980__ $$aAPC
000838637 980__ $$aUNRESTRICTED
000838637 981__ $$aI:(DE-Juel1)ICE-4-20101013