001     838637
005     20240712100850.0
024 7 _ |a 10.5194/acp-17-12219-2017
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/15697
|2 Handle
024 7 _ |a WOS:000412937900002
|2 WOS
024 7 _ |a altmetric:27385951
|2 altmetric
037 _ _ |a FZJ-2017-07210
082 _ _ |a 550
100 1 _ |a Costa, Anja
|0 P:(DE-Juel1)156523
|b 0
|e Corresponding author
245 _ _ |a Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime
260 _ _ |a Katlenburg-Lindau
|c 2017
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515491096_19488
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The degree of glaciation of mixed-phase clouds constitutes one of the largest uncertainties in climate prediction. In order to better understand cloud glaciation, cloud spectrometer observations are presented in this paper, which were made in the mixed-phase temperature regime between 0 and −38 °C (273 to 235 K), where cloud particles can either be frozen or liquid. The extensive data set covers four airborne field campaigns providing a total of 139 000 1 Hz data points (38.6 h within clouds) over Arctic, midlatitude and tropical regions. We develop algorithms, combining the information on number concentration, size and asphericity of the observed cloud particles to classify four cloud types: liquid clouds, clouds in which liquid droplets and ice crystals coexist, fully glaciated clouds after the Wegener–Bergeron–Findeisen process and clouds where secondary ice formation occurred. We quantify the occurrence of these cloud groups depending on the geographical region and temperature and find that liquid clouds dominate our measurements during the Arctic spring, while clouds dominated by the Wegener–Bergeron–Findeisen process are most common in midlatitude spring. The coexistence of liquid water and ice crystals is found over the whole mixed-phase temperature range in tropical convective towers in the dry season. Secondary ice is found at midlatitudes at −5 to −10 °C (268 to 263 K) and at higher altitudes, i.e. lower temperatures in the tropics. The distribution of the cloud types with decreasing temperature is shown to be consistent with the theory of evolution of mixed-phase clouds. With this study, we aim to contribute to a large statistical database on cloud types in the mixed-phase temperature regime.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Meyer, Jessica
|0 P:(DE-Juel1)129137
|b 1
700 1 _ |a Afchine, Armin
|0 P:(DE-Juel1)129108
|b 2
|u fzj
700 1 _ |a Luebke, Anna
|0 P:(DE-Juel1)161554
|b 3
700 1 _ |a Günther, Gebhard
|0 P:(DE-Juel1)129123
|b 4
|u fzj
700 1 _ |a Dorsey, James R.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gallagher, Martin W.
|0 0000-0002-4968-6088
|b 6
700 1 _ |a Ehrlich, Andre
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wendisch, Manfred
|0 0000-0002-4652-5561
|b 8
700 1 _ |a Baumgardner, Darrel
|0 0000-0002-3296-3085
|b 9
700 1 _ |a Wex, Heike
|0 0000-0003-2129-9323
|b 10
700 1 _ |a Krämer, Martina
|0 P:(DE-Juel1)129131
|b 11
773 _ _ |a 10.5194/acp-17-12219-2017
|g Vol. 17, no. 19, p. 12219 - 12238
|0 PERI:(DE-600)2069847-1
|n 19
|p 12219 - 12238
|t Atmospheric chemistry and physics
|v 17
|y 2017
|x 1680-7324
856 4 _ |u https://juser.fz-juelich.de/record/838637/files/invoice_Helmholtz-PUC-2018-6.pdf
856 4 _ |u https://juser.fz-juelich.de/record/838637/files/acp-17-12219-2017.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838637/files/acp-17-12219-2017.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838637/files/acp-17-12219-2017.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838637/files/acp-17-12219-2017.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838637/files/acp-17-12219-2017.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838637/files/acp-17-12219-2017.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838637/files/invoice_Helmholtz-PUC-2018-6.gif?subformat=icon
|x icon
856 4 _ |u https://juser.fz-juelich.de/record/838637/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/838637/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/838637/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-640
|x icon-640
856 4 _ |u https://juser.fz-juelich.de/record/838637/files/invoice_Helmholtz-PUC-2018-6.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:838637
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156523
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129108
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129131
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21