001     838893
005     20240610120906.0
024 7 _ |a 10.1038/s41598-017-14346-4
|2 doi
024 7 _ |a 2128/15832
|2 Handle
024 7 _ |a pmid:29079767
|2 pmid
024 7 _ |a WOS:000413907000101
|2 WOS
037 _ _ |a FZJ-2017-07399
041 _ _ |a English
082 _ _ |a 000
100 1 _ |a Rack, Kathrin
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Margination and stretching of von Willebrand factor in the blood stream enable adhesion
260 _ _ |a London
|c 2017
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522071164_17860
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The protein von Willebrand factor (VWF) is essential in primary hemostasis, as it mediates platelet adhesion to vessel walls. VWF retains its compact (globule-like) shape in equilibrium due to internal molecular associations, but is able to stretch when a high enough shear stress is applied. Even though the shear-flow sensitivity of VWF conformation is well accepted, the behavior of VWF under realistic blood flow conditions remains poorly understood. We perform mesoscopic numerical simulations together with microfluidic experiments in order to characterize VWF behavior in blood flow for a wide range of flow-rate and hematocrit conditions. In particular, our results demonstrate that the compact shape of VWF is important for its migration (or margination) toward vessel walls and that VWF stretches primarily in a near-wall region in blood flow making its adhesion possible. Our results show that VWF is a highly optimized protein in terms of its size and internal associations which are necessary to achieve its vital function. A better understanding of the relevant mechanisms for VWF behavior in microcirculation provides a further step toward the elucidation of the role of mutations in various VWF-related diseases.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
536 _ _ |a Margination and Adhesion of Particles and Cells in Blood Flow (jiff44_20140501)
|0 G:(DE-Juel1)jiff44_20140501
|c jiff44_20140501
|f Margination and Adhesion of Particles and Cells in Blood Flow
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Huck, Volker
|0 0000-0001-8988-1091
|b 1
700 1 _ |a Hoore, Masoud
|0 P:(DE-Juel1)166533
|b 2
700 1 _ |a Fedosov, Dmitry A.
|0 P:(DE-Juel1)140336
|b 3
|e Corresponding author
700 1 _ |a Schneider, Stefan W.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gompper, Gerhard
|0 P:(DE-Juel1)130665
|b 5
773 _ _ |a 10.1038/s41598-017-14346-4
|g Vol. 7, no. 1, p. 14278
|0 PERI:(DE-600)2615211-3
|n 1
|p 14278
|t Scientific reports
|v 7
|y 2017
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/838893/files/s41598-017-14346-4.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838893/files/s41598-017-14346-4.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838893/files/s41598-017-14346-4.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838893/files/s41598-017-14346-4.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838893/files/s41598-017-14346-4.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/838893/files/s41598-017-14346-4.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:838893
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166533
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)140336
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130665
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)ICS-2-20110106
|k ICS-2
|l Theorie der Weichen Materie und Biophysik
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21