Journal Article FZJ-2017-07399

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Margination and stretching of von Willebrand factor in the blood stream enable adhesion

 ;  ;  ;  ;  ;

2017
Nature Publishing Group London

Scientific reports 7(1), 14278 () [10.1038/s41598-017-14346-4]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The protein von Willebrand factor (VWF) is essential in primary hemostasis, as it mediates platelet adhesion to vessel walls. VWF retains its compact (globule-like) shape in equilibrium due to internal molecular associations, but is able to stretch when a high enough shear stress is applied. Even though the shear-flow sensitivity of VWF conformation is well accepted, the behavior of VWF under realistic blood flow conditions remains poorly understood. We perform mesoscopic numerical simulations together with microfluidic experiments in order to characterize VWF behavior in blood flow for a wide range of flow-rate and hematocrit conditions. In particular, our results demonstrate that the compact shape of VWF is important for its migration (or margination) toward vessel walls and that VWF stretches primarily in a near-wall region in blood flow making its adhesion possible. Our results show that VWF is a highly optimized protein in terms of its size and internal associations which are necessary to achieve its vital function. A better understanding of the relevant mechanisms for VWF behavior in microcirculation provides a further step toward the elucidation of the role of mutations in various VWF-related diseases.

Classification:

Contributing Institute(s):
  1. Theorie der Weichen Materie und Biophysik (ICS-2)
  2. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 553 - Physical Basis of Diseases (POF3-553) (POF3-553)
  2. Margination and Adhesion of Particles and Cells in Blood Flow (jiff44_20140501) (jiff44_20140501)

Appears in the scientific report 2017
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; BIOSIS Previews ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-HPC
Institute Collections > IBI > IBI-5
Institute Collections > IAS > IAS-2
Workflow collections > Public records
Workflow collections > Publication Charges
ICS > ICS-2
Publications database
Open Access

 Record created 2017-11-09, last modified 2024-06-10