001     840012
005     20240610120959.0
024 7 _ |a 10.1038/s41467-017-00829-5
|2 doi
024 7 _ |a 2128/15918
|2 Handle
024 7 _ |a pmid:28947803
|2 pmid
024 7 _ |a WOS:000411646700011
|2 WOS
024 7 _ |a altmetric:26561761
|2 altmetric
037 _ _ |a FZJ-2017-07582
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Grillo, Vincenzo
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Observation of nanoscale magnetic fields using twisted electron beams
260 _ _ |a London
|c 2017
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511184250_32653
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Electron waves give an unprecedented enhancement to the field of microscopy by providing higher resolving power compared to their optical counterpart. Further information about a specimen, such as electric and magnetic features, can be revealed in electron microscopy because electrons possess both a magnetic moment and charge. In-plane magnetic structures in materials can be studied experimentally using the effect of the Lorentz force. On the other hand, full mapping of the magnetic field has hitherto remained challenging. Here we measure a nanoscale out-of-plane magnetic field by interfering a highly twisted electron vortex beam with a reference wave. We implement a recently developed holographic technique to manipulate the electron wavefunction, which gives free electrons an additional unbounded quantized magnetic moment along their propagation direction. Our finding demonstrates that full reconstruction of all three components of nanoscale magnetic fields is possible without tilting the specimen.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Harvey, Tyler R.
|0 0000-0002-5368-136X
|b 1
700 1 _ |a Venturi, Federico
|0 0000-0002-3156-4736
|b 2
700 1 _ |a Pierce, Jordan S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Balboni, Roberto
|0 0000-0003-3487-5561
|b 4
700 1 _ |a Bouchard, Frédéric
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Carlo Gazzadi, Gian
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Frabboni, Stefano
|0 0000-0002-9352-1125
|b 7
700 1 _ |a Tavabi, Amir H.
|0 P:(DE-Juel1)157886
|b 8
|u fzj
700 1 _ |a Li, Zi-An
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Boyd, Robert W.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a McMorran, Benjamin J.
|0 0000-0001-7207-1076
|b 11
700 1 _ |a Karimi, Ebrahim
|0 0000-0002-8168-7304
|b 12
|e Corresponding author
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 13
|u fzj
773 _ _ |a 10.1038/s41467-017-00829-5
|g Vol. 8, no. 1, p. 689
|0 PERI:(DE-600)2553671-0
|n 1
|p 689
|t Nature Communications
|v 8
|y 2017
|x 2041-1723
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/840012/files/s41467-017-00829-5.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/840012/files/s41467-017-00829-5.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/840012/files/s41467-017-00829-5.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/840012/files/s41467-017-00829-5.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/840012/files/s41467-017-00829-5.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/840012/files/s41467-017-00829-5.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:840012
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)157886
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2015
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21